<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Roco Rescue

Roco Rescue
RescueTalk™ provides leading news and information for safety and rescue professionals and is a service of Roco Rescue, Inc., who specializes in confined space rope rescue training and rescue products for first responders in industrial rescue, municipal rescue and military rescue.
Find me on:

Recent Posts

Trench Death Leads to Jail Time

Tuesday, March 22, 2022

For the first time in the state’s history, a Washington employer will go to jail for the death of one of his employees due to trench safety violations.

The incident occurred back in 2016 when a worker was crushed to death under more than 6,000 pounds of dirt when an 8- to 10-foot-deep trench caved in on top of him at a West Seattle home. Washington state OSHA regulations require trenches over 4-feet deep to be shored (the federal OSHA requirement is 5 feet.)

The Labor and Industries (L&I) Department, which houses Washington OSHA, cited the construction company in September 2016 and fined the company $51,500, including two willful violations stating that the company “knowingly ignored basic, common-sense safety rules”.

opentrench

The trench in question had been dug for over a week prior. During the time it was open, there were several days of heavy rain. The trench was only shored on two sides and only part way up. It was dug right next to the house and a sidewalk, weakening the support for both of them. The dirt taken out of the trench was piled right next to it. The trench dirt had been previously loosened from earlier digging. The worker was given a reciprocating saw to use in the trench which vibrated it and further loosened the dirt. Each one of these things made the trench more likely to collapse. There was also no ladder or other safe way to get out quickly.

Violations included: not protecting workers from cave-in; failure to have an accident-prevention program for excavation work; no ladder or other safe way to enter and exit the trench; sidewalks and structures were not supported to protect employees; dirt and other materials were less than 2 feet from the edge of the excavation; and there were no daily inspections of the changing soil conditions.

Trench collapses are well known hazards and easy to prevent if federal or state OSHA standards are followed. Yet every month, workers die (or in a few cases are rescued) from unsafe trenches in this country. Federal OSHA requires every trench over 5-feet deep to be protected with a trench box or some other form of shoring or sloping. The problem is that trench walls can collapse in seconds and you generally can’t dig someone out of a deep collapsed trench. One cubic meter of soil weighs around 3,000 pounds — the size of a small automobile. When an automobile falls on your chest, you are unlikely to survive. Even the attempt to dig someone out is fraught with peril: collapsed trenches can continue to collapse, endangering the rescuers.

Criminal Charges

Two years after the worker’s death, King County Prosecutor’s Office charged the company owner with felony second-degree manslaughter and violation of labor safety regulation for alleged negligence that caused the death. It was the first time a Washington employer had faced felony manslaughter charges for a workplace death. According to L&I Director Joel Sacks, “There are times when a monetary penalty isn’t enough.”

However, instead of the manslaughter charge, the prosecutor’s office later backed down and reached a settlement with the owner, where he pleaded guilty to the crime of Attempted Reckless Endangerment, a simple misdemeanor and agreed to serve 45 days in jail. The company must also pay a fine of $100,000 (in addition to the original L&I fine) and serve probation for 18 months.

The owner is the first Washington state employer to serve time in jail for a workplace death, but he may not be the last. Five people were charged with manslaughter after the January 2020 trench collapse at a wind farm facility in Lewis County that killed a 24-year-old worker. A Lewis County Superior Court judge later dismissed all charges against four of the five codefendants. Only one of the individuals will face one count of first-degree manslaughter.

A Powerful Deterrent

According to officials, the prospect of jail time can be a powerful deterrent for employers who routinely cut corners on workplace safety. However, only 110 worker death cases have been criminally prosecuted under the Occupational Safety and Health Act since 1970, with defendants serving a total of at least 112 months in jail.

Local prosecutors have been more active, to include:

  • In Philadelphia, the district attorney successfully prosecuted the general contractor and crane operator for the deaths of six individuals in the 2013 Salvation Army building collapse, winning convictions for involuntary manslaughter and jail time.
  • In New York City, the Manhattan district attorney won a manslaughter conviction against a general contractor for the 2015 trenching death of a young undocumented immigrant construction worker. The foreman for the excavation company was convicted of criminally negligent homicide and reckless endangerment, and sentenced to one to three years in jail.

This article was originally written by Jordan Barab of Confined Space.
https://jordanbarab.com/confinedspace/2022/03/15/trench-jail-time/

Additional Resources

If you’re concerned that your rescue service may not be adequately prepared, give us a call or check out these resources for more information on how to keep you and your personnel safe around trenches.

 

Fall Protection Planning - Lives are on the Line

Tuesday, March 1, 2022

We’ve all heard it before, “falls are one of the leading causes of death in the industry.” In fact, falls have been the leading cause of death in the construction industry, year after year, for over a decade now. Additionally, Fall Protection (29 CFR 1926.501) and other related standards continue to land on OSHA’s “Top 10 Most Frequently Cited Standards” list each year.

According to NIOSH, 401 of the 1,102 construction fatalities recorded in 2019 were due to falls. To raise awareness of this hazard, OSHA now conducts a “National Fall Protection Safety Stand-down” to prevent falls in construction and has done so each year since 2014. The 2022 Stand-Down is May 2-6, but OSHA encourages holding your own stand-down any time, year-round.

ISHN Fall Pro photo for IG

With all of the emphasis on fatal falls, why are workers continuing to fall to their deaths? More importantly, what can we do to prevent them? Well, I’m glad you asked!

There are many actions that employers can take to prevent fatal falls from occurring in the industry; however, the adage “an ounce of prevention is worth a pound of cure” definitely comes to mind here. The most effective measure that any company can take to prevent fatal falls is to implement proper planning before work begins. An effective fall protection plan is multi-faceted and contains multiple steps, all of which should be given great attention to detail.

What should a fall protection plan include?

1) General Information About the Jobsite

As with any plan, an effective fall protection plan should begin with general information about the task at hand. What type of jobsite or facility is this? Is the job taking place at a residential home, a new construction project, or an industrial manufacturing facility? What type of work is being done? Consider electrical work, roofing, hot work, confined space work, or other tasks that may be a contributing factor in falls. Are there any existing fall protection measures in place? In many cases, permanent ladders and guardrails are in place throughout the jobsite; however, on new construction, there may not be any existing fall protection measures. Are there any work surfaces that could affect the job? Take note of areas that may be slippery, areas that could be abrasive, uneven or unlevel areas or areas with trip hazards. Will the weather impact the safety of the job? Consider how rain, wind, or ice accumulation could impact the jobsite. What is the estimated duration of the job? Long-term jobs may require different solutions from short-term jobs. In some instances, scaffold erection may not be an effective use of time and mobile aerial lifts may be more feasible.

2) Assessment of All Fall Hazards on Site

Once the general information of the jobsite has been documented, a thorough assessment of all fall hazards on the jobsite should be conducted and documented. OSHA has different fall protection requirements for General Industry and Construction. While there are a nearly unlimited number of ways that fall hazards can present on a jobsite, the following are a few examples of the more common situations to look for:

  • Open-sided walking/working surfaces
  • Open-sided ramps, runways, and platforms
  • Floor openings
  • Wall openings
  • Elevator Shafts
  • Stairwells
  • Trenches

Do not skimp out on this step of your plan. After all, if you do not identify a fall hazard, you will not be able to protect against it! Consider including workers of all levels in the hazard assessment; every worker has a different perspective and may identify things that are missed by others.

3) Outline of Fall Protection Measures to be Used

Now it’s time to decide how you are going to protect workers from the hazards identified. The hierarch of fall protection is a 5-tiered approach, and the preferred method to eliminate or reduce the risk of falls. The 5 tiers are as follows:

  1. HierarchyofFallProPoster

    Hazard Elimination (best practice)
    The most effective measure of protecting workers from a fall hazard is to eliminate it all together. If possible, relocate the work to ground level or eliminate the exposed edge or opening.
  2. Passive Fall Protection
    In many cases, elimination of the hazard is not possible or feasible. The next best measure to implement is to provide passive fall protection which includes things like guardrails or hole covers. Passive fall protection provides a lower possibility of error as it does not rely on the use of personal protective equipment (PPE). 
  3. Active Fall Restraint
    In some cases, passive fall protection is not warranted as the duration of exposure may not offset the cost of implementing passive protection or the task being performed may not allow for passive fall protection. Active fall restraint is a type of PPE that limits a worker’s range of movement so that they cannot physically travel to the area of the fall hazard. This method is preferred over fall arrest as it significantly reduces the likelihood of secondary injury due to falls and the need to perform a suspended worker rescue. However, there are many cases where a worker must enter the area of the hazard to perform work.  
  4. Active Fall Arrest
    An important note with active fall arrest systems is that they do not prevent a worker from falling but rather prevent the worker from contacting lower levels after the fall has occurred. One important, and often overlooked, element of this is having an effective rescue plan. Be sure to have a plan in place in the event that someone does fall. You must also ensure that workers are trained and understand how to properly use their equipment as well as its limitations. More on that later.
  5. Establishing Controlled Access Zones (least effective)
    As a last resort, controlled access zones may be established to limit essential personnel into the area of the fall hazard. These methods generally include safety monitoring systems, warning lines or horns, or control lines. It is important to note that these controls are the least effective as they do not provide any physical means of protection. It is strongly recommended that all efforts have been exhausted to use the previous methods in the hierarchy before settling on controlled access zones.

4) Outline of Use, Maintenance, and Inspection Procedures for Equipment Being Used

Now that the methods of fall protection and prevention for the jobsite have been established, an outline of use, maintenance, and inspection procedures for the equipment used should be documented. Be sure to include proper assembly and disassembly procedures for equipment according to the manufacturer's recommendations. Ensure that a process exists for a competent person to inspect equipment at least annually or as required by manufacturer’s recommendations as well as a process for inspection of safety equipment by the end-user before each use. Any defective equipment must be tagged and removed from service immediately.

5) Outline of the Handling, Storage, and Securing of Tools and Materials on the Jobsite

This section of the fall protection plan goes hand-in-hand with the previous section. Establish a clear outline of how the equipment will be handled and stored on the jobsite. If equipment is not stored properly, it may become contaminated or damaged and render unsafe for use. Storage and handling of equipment vary from jobsite to jobsite but remember to protect equipment against heat, moisture, and chemicals when storing your equipment.

6) Outline of Overhead Protection to be Used

While not directly related to preventing workers themselves from fall hazards, it is important to address how workers in the area of overhead work will be protected. The use of toeboards, debris nets, or other side guards can be effective in preventing tools and material from falling below. Lanyards used to tether tools to the worker are also a great way to avoid dropped objects. Ensure that workers are notified of overhead work in the area with signs and barricades when possible. Consider postponing overhead work in unfavorable weather conditions and secure loose objects whenever possible.

7) Detailed Rescue Plan

Perhaps the most often overlooked item of a fall protection plan is the rescue plan. Many workers in the construction industry know that they must tie-off when working at heights; however, few take the time to think about what happens if/when they fall. Take the time to discuss and document the plan of action to be taken when someone falls. Suspension trauma is a life-threatening condition that can develop when a worker is hanging from their fall arrest system and can be lethal in as little as five minutes. Consider the use of a specialized rescue team for complex scenarios or be sure that you have the proper equipment, training, and proficiency to perform the rescue if needed. Remember, with fall protection – your life is literally on the line!

8) Employee Training and Instructions

Without adequate training, even the most effective plan is worthless. Remember that jobsites are dynamic and that fall hazards that were not present yesterday may be present today. For this reason, ensure that workers are trained to identify fall hazards and how to take measures to reduce or eliminate the hazard. Be sure that workers know when, where, how, and what fall protection equipment is to be used for the task or hazard in question. Also, ensure that workers know how to properly inspect their equipment before use and what to do with equipment that does not pass inspection. Most importantly, ensure that workers are trained on the fall protection plan, have easy access to it, and know how to access it for reference at any time.   

Number of Fatal Injuries

Summary

Despite the increased emphasis placed on falls, they continue to be the number one killer in the construction industry. Unfortunately, the one thing that doesn’t seem to fall is the number of fatalities resulting from it. While there are many actions that employers can take to reduce the likelihood of a fall occurring, the most effective measure is to have an adequate fall protection plan in place. Establish the details of the job, identify the fall hazards, and develop a method to eliminate or reduce the risk associated with the hazard. Establish a guide for proper use, maintenance, inspection, and storage of fall protection equipment and ensure that workers have the training they need to do the job safely. Last but not least, ensure that you have an adequate rescue plan in the event that a fall does occur. Remember, with fall protection – your life is on the line!

 

ChrisMcGlynn headshot McGlynn is the Director of Safety/VPP Coordinator for Roco Rescue. He is a Certified Safety Professional (CSP) through the Board of Certified Safety Professionals as well as a Certified Confined Space and Rope Rescue Technician, and a Nationally Registered Paramedic. As Director of Safety, Chris oversees all corporate safety initiatives, ensuring that employees at Roco have the tools and training that they need to do their work safely and effectively. He is also responsible for managing Roco's Safety Services Division, which provides trained safety professionals for turnarounds and other special projects. Finally, Chris serves as the VPP Coordinator for Roco, continuing Roco’s long-standing commitment to excellence in safety and health. Roco has been an OSHA VPP Star Worksite since 2013.

Follow Chris LinkedinIcon

 

Additional ResourcesFall Hazard Survey form

 

 

Open Trenches…It’s Only a Matter of Time!

Monday, January 3, 2022

You’ll spot them everywhere – from a local utility company working in your neighborhood to your workplace at an industrial or manufacturing facility during construction. It’s way too common to see an open trench unattended and unprotected. And, as we know, it’s only a matter of time until it collapses.Trenches-SantaFe-01

More and more of our customers are asking questions to address safety-related concerns. For example, who’s signing off on the trench project? Is the person you have signing off that a trench is constructed properly and safe for entry trained to know what to look for? Do they have the authority to act (competent person), or are they assuming that the contractor is “doing the right thing”? It is all too common that supervisors are signing off on trench permits without having any trench safety training or experience. Therefore, they cannot be considered competent persons.

Of course, this is troubling. It’s troubling due to the hazards involved and the personnel who will be entering the trench. A trench collapse happens in seconds, making an escape very unlikely once the soil starts moving. Due to the weight of the soil and the speed of the collapse, most do not survive.

Trench safety starts with the Competent Person. If none are available, who is watching out for the safety of the entrants? Not just anybody will do. According to 1926.650(b), the Competent Person is “one who is capable of identifying existing and predictable hazards in the surroundings, or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has authorization to take prompt corrective measures to eliminate them.” Who on your site is responsible for this? Do they have the authority to correct hazards immediately?

Hopefully, we’ve convinced you of the importance of a trained and experienced Competent Person. Now, what about rescue in case the worst does happen? You’ve got an extremely hazardous situation – is your rescue service prepared for this? Your emergency response team may be trained for most emergencies, but what about this one?

Trench is one of the most dangerous rescue disciplines. It requires special knowledge, such as soil classification, hazard analysis and mitigation, understanding tabulated data, and the proper installation of shoring and shielding systems, just to name a few. It also requires specialized equipment that many response organizations simply don’t possess. This seems to be true for most municipal and industrial teams. With specialized training and equipment required for safe operations, it’s a commitment that most rescue teams just can’t make.

With trench rescue, timeliness is everything. Although it is often a slow and tedious process, proper training and equipment can be the difference between a rescue and a body recovery. Don’t ignore this hazard that may be located on your street or worksite. Take a careful look around, we think you’ll be surprised with the number of trenches and excavations that are occurring on a daily basis.

Did You Know?

After researching many of the questions we have received concerning trench operations, we came across this OSHA Letter of Interpretation that was reviewed most recently on November 8, 2018.
Note: It is always important to review all standards and regulations in their entirety.

Here are some excerpts:

1. Can workers enter a trench with water accumulation if the workers are protected from cave-in by shoring, shields or sloping, and the water level is controlled?

Paragraph .651(h) of 29 CFR 1926 allows workers to work in a trench with water accumulation, provided adequate precautions have been taken to protect employees against the hazards posed by water accumulation. The precautions necessary to comply with the standard vary with each situation, and the precautions you listed, such as additional shoring and control of the water level may not, in all cases, provide the required employee protection. 

2. The Stairways and Ladders Standard requires that a stairway or ladder shall be provided at points of access where there is a break in elevation of 19 inches or more. The Excavation Standard requires a ladder or other means of access and egress when the trench is 4 feet or more. Which of these requirements is applicable to trenching operations?

Be advised that since the specific excavation standard also addresses means of access and egress, the more general requirement in the stairways and ladders subpart is not applicable. A ladder, stairway, ramp or other safe means of access is required only when the trench is four feet or more in depth. Paragraph 651(c)(2) also states…as to require no more than 25 feet (7.62 m) of lateral travel for employees.

3. Must rescue equipment be available at every trenching jobsite that is located near or passes by a gas station, refinery, gas line, sewer main, etc.? Can a contractor rely on the local rescue squad since they are probably better equipped to handle a rescue?

Emergency rescue equipment is required to be readily available where a competent person determines, based on the conditions at each jobsite, that hazardous atmospheric conditions exist or may reasonably be expected to develop during work in an excavation.

In regard to whether a contractor can rely on a local rescue squad instead of providing the rescue equipment, please be advised that many emergency situations associated with the hazards involved with hazardous atmospheres in trenches would normally require an immediate response within a few minutes or even seconds.

A rescue squad would be unable to provide the necessary response and therefore could not be used to comply with 1926.651(g)(2).

4. If a contractor has several of the same make and model trench shields at a jobsite, does he have to have separate manufacturer's tabulated data on hand for each specific shield? We have been told that the shields and the data sheets must have the same serial number in order to be in compliance.

Be advised that only one set of tabulated data is required for each different shield design. If a contractor uses several shields of the identical make and model, only one set of tabulated data would be required for them.

5. Do excavations greater than 20 feet have to be designed by an RPE (Registered Professional Engineer) or can manufacturer's tabulated data be used in lieu of an RPE? For example, a contractor may have boxes rated for depths greater than 20 feet.

Protective systems that are designed using a manufacturer's tabulated data can be used in trenches deeper than 20 feet provided the use is within the limits of the data, including depth limitations and soil type. It should be noted that all tabulated data, by definition (1926.650), must be approved by an RPE.

6. We clearly understand that a ladder has to be secured, but we are not sure how. Contractors have informed us that compliance officers have told them that they cannot secure a ladder to the shoring system or in some cases the trench shield. These same contractors have been told to secure the ladder by driving a stake into the ground and to tie the ladder off to the stake. This alternate method presents three different problems: 1) It is not always possible to drive a stake through concrete or asphalt sidewalks or pavement; 2) This method creates a tripping hazard next to the trench; 3) Some contractors believe that driving a stake could create a stress crack. Please clarify these requirements for us?

Paragraphs 1926.1053(b)(6) and (7) address ladder footing displacement which is not normally a problem in trenches. If a ladder needs to be secured against tipping, it may be secured to a shield or member of a protective structure provided the ladder does not alter the effectiveness of the protective system.

7. Does the competent person have to be standing by the trench at all times during the work shift or can he/she go off site for short periods of time, such as lunch, meeting, or maybe to pick up supplies at the local builder’s supply store? Can the competent person move around the jobsite away from the trench? Often the foreman is the competent person and he may have other responsibilities at the jobsite.

It is not normally necessary for a competent person to be at a jobsite at all times. However, it is the responsibility of a competent person to ensure compliance with applicable regulations and to make those inspections necessary to identify situations that could result in possible cave-ins, indications of failure of protective systems, hazardous atmospheres, or other hazardous conditions, and then to ensure that corrective measures are taken. Consistent with these goals, the competent person may perform other duties.

8. Must an RPE approve all work when digging below a footing, foundation, retaining wall, sidewalk or pavement? We recognize the need for an RPE to design a system to support buildings and structures. However, we don't agree that an RPE is needed to layout a system to support sidewalks, pavement, and in some cases small structures like a small retaining wall. It is often very difficult to find an RPE who is willing to take on small incidental projects.

An RPE approval is not required when the excavation is not "reasonably expected to pose a hazard to employees." In situations where it is reasonably expected to pose a hazard, an RPE approval is not required when a support system, such as underpinning, is provided to ensure the safety of employees and the stability of the structure, or the excavation is in stable rock.

9. At what point and under what conditions would OSHA consider a trench a confined space?

Under normal circumstances, a trench would not be considered a confined space. The excavation standards address the hazards associated with employees entering potentially harmful atmospheres by requiring atmospheric testing and controls where hazardous atmospheres exist or could reasonably be expected to exist.

10. Some compliance officers are telling contractors that they must use a penetrometer or shearvane to estimate the compressive strength of soil and that the thumb test is unacceptable. Keeping in mind that these are field tests. We realize that the thumb test is not accurate, but neither is the penetrometer that many compliance officers swear by. What is OSHA's interpretation for using a thumb test versus an instrument?

Be advised that the thumb penetration test is one of the acceptable methods of estimating soil compressive strength. The compressive strength can be determined by laboratory testing, or estimated in the field using a penetrometer, shearvane, thumb penetration tests, as well as by other methods.

Source: OSHA Letter of Interpretation: Construction standards addressing excavations (reviewed November 8, 2018)

Additional Resources

If you’re concerned that your rescue service may not be adequately prepared, give us a call or check out these resources for more information on how to keep you and your personnel safe around trenches.

Trench Safety & Rescue Articles: Read More

Trench Training: Competent Person | Trench Rescue Technician

 

 

Two December Rescues Underscore the Importance of Good Training

Monday, December 27, 2021

Firefighters perform rescues every day in many different situations. These two incidents this month show how regular training sessions ensure the success of dangerous rescues.

12/1/2021 – Broward County, Florida Rope Rescue

Lower to Line Transfer-BSFR12012021

Two workers on a suspended platform required rescue after the platform partially collapsed. One worker was suspended from the dorsal attachment of his fall protection harness and the other was partially entangled in the teetering platform approximately 70 feet above the ground.

Line Transfer-BSFR12012021_cropBroward Sheriff Fire Rescue responded and first lowered a rescuer down to perform a line transfer, or “pick-off”, and lowered the pair the rest of the way to the ground. The second worker was disentangled from the platform and lowered using the aerial (ladder truck).
Source: WVSN 7 News, Miami

 

 

 

12/21/2021 – Atlanta, Georgia Confined Space Rescue

Tripod Lower-AFR12212021

A worker fell almost 20 feet into an underground ventilation shaft. Atlanta Fire Rescue lowered a firefighter into the shaft to assess and package the injured worker, who was alert and complaining of leg pain. He was then raised from the shaft in a Stokes basket using a TerrAdaptor tripod.

Tripod Raise-AFR12212021Source: Fox5, Atlanta

Additional Resources

Roco Rescue Quick Drills

Roco’s Quick Drills focus on tasks like patient packaging, tripod use, building anchors and setting up safe and efficient systems.

Roco Videos demonstrate patient packaging techniques, mechanical advantage systems, and more.

OSHA Confined Space Incident Log

Wednesday, December 1, 2021

Confined spaces continue to present fatal hazards to workers, and OSHA continues to take notice. While OSHA lists fewer confined space accidents in 2021 than in 2020, 100% of them involved fatalities. the following summaries are from OSHA News Releases. These tragedies serve as reminders to employers and rescuers of the inherent dangers involved in confined space entry. Don't take chances when confined spaces are involved – the cost is simply too high.

8/2/2021 Dallas – Initiative to Protect Workers from Confined Space Dangers1

OSHA Regional Emphasis will target the transportation tank cleaning industry in Texas, Oklahoma, Arkansas, and Louisiana.

This special initiative is designed to focus on industries involving tank cleaning activities, including trucking, rail and road transportation, remediation services, material recovery and waste management services. Transportation tanks on trucks, trailers or railcars require cleaning and inspecting before they are refilled for transport. The workers who clean these tanks risk exposure to toxic vapors from chemicals, decaying crops, waste and other substances, and to asphyxiation, fires and explosions.

The agency reported that a worker cleaning the inside of a tank trailer in Pasadena, Texas, in December 2019 fell victim to hazardous vapors, as did a co-worker who attempted rescue. Then, in August 2020, two workers entered a natural gas tanker on a railcar in Hugo, Oklahoma, and fell victim to its vapors (see the 2/10 release below). Due to these incidents, four lives were lost in the tank cleaning industry in less than a year – a troubling trend of preventable workplace deaths in the region.

“Too often, employers allow workers to enter tanks without testing atmospheric conditions, completing confined space entry permits or providing adequate respiratory protection,” said OSHA Regional Administrator Eric Harbin.

8/2/2021 Chicago – Initiative to Protect Workers in Tank Cleaning Industry from Atmospheric, Confined Space Hazards2

OSHA Regional Emphasis was issued for the Midwest after multiple deaths occurred in tank trucks. The report listed two examples of instances:

  • A worker tasked with cleaning a chemical tank trailer collapsed upon entering the tank. Hearing the employee’s call for help, a nearby truck driver entered the tank. Both succumbed to fatal toxic fumes.
  • A worker opened the lid of a tanker trailer containing toluene and was found a short time later lying across the open dome and unresponsive. He survived after being treated at a local hospital for respiratory failure and cardiac arrest.

OSHA Chicago reported that 23 deaths and 97 incidents have occurred in the region since 2016. The most common violations included the failure to prevent inhalation of harmful substances and to follow procedures for permit-required confined spaces.

7/23/2021 Georgia – Six Preventable Confined Space Deaths at Poultry Processing Plant3

On January 28, 2021, six workers went to work at a poultry processing plant unaware that they would not be returning home. Just after their shift began, a freezer malfunctioned, releasing colorless, odorless liquid nitrogen that displaced the oxygen in the room.

Three maintenance workers entered the freezer room without precautions – never trained on the deadly effects of nitrogen exposure – and were overcome immediately. Three other workers entered the room and were also overcome. Five of the workers died immediately, a sixth died on the way to the hospital. At least a dozen other workers needed hospital care.

Of the numerous violations, the company failed to perform a hazard assessment for exposure to liquid nitrogen and also failed to implement a permit-required confined space program for workers who entered the freezer. In addition, they did not notify contractors who are required to work inside the liquid nitrogen freezer that it was a permit-required confined space.

3/29/2021 Ohio – Production Facility Cited for Exposing Employees to Dangerous Confined Spaces and other Hazards4

A January 2021 investigation found that machine operators and maintenance employees entered powder-coated ovens routinely without testing atmospheric conditions or securing natural gas lines and operating machine parts. The company also exposed workers to multiple safety and health hazards by failing to designate the ovens as permit-required confined spaces. The employer also failed to isolate natural gas lines and mechanical energy, i.e., lockout/tagout.

“Confined spaces often expose workers to atmospheric and mechanical hazards,” said OSHA Area Director Ken Montgomery. “OSHA has specific regulations for implementing required training and safety procedures to protect workers who must enter confined spaces, including atmospheric testing and ensuring equipment and energy sources are disabled before workers enter these spaces.”

2/10/2021 Oklahoma – Two Confined Space Deaths at Railcar Company5

Here is additional information concerning a railcar incident that was mentioned in the August release above.

A worker entered a natural gas railcar for cleaning on August 12, 2020. He became unresponsive shortly after entering the tank. A second employee entered the space and was also overcome in an attempt to rescue the fallen worker. Both workers were eventually recovered and later pronounced dead at a local hospital.

OSHA found that the company failed to require a permit to allow entry into the railcar, ventilate the space, monitor hazards inside the space and complete entry permits for work inside a confined space. The company was cited for 11 serious violations and two willful violations.

“Work inside confined spaces is a dangerous job and federal workplace safety standards must be followed to avoid disaster,” said OSHA Area Director Steven Kirby. “As is the case here, failing to follow OSHA standards can be the difference between life and death.”

Roco Rescue CS Attendant Requirements

Additional Resources

 

 

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!