<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Fast-Track 120 Students Put Skills to Test in Recovery Operation

Friday, August 9, 2013

Fast-Track 120 Students Put Skills to Test in Recovery OperationDuring a recent Roco Fast-Track 120 class in Albuquerque, New Mexico, two of our students got to use the skills they had just learned during a real world event. On Day 6 of the 12-day class, NM State Police Tactical officers Hugo Munoz and Jose Urbano received a call for assistance in the recovery of an individual that had been swept into one of the many arroyos that crisscross the region following a sudden rainstorm.

Here’s a photo from the Fast-Track 120 class where Officer Urbano is shown “rescuing” Officer Munoz.

The officers responded and found the local fire and law enforcement personnel on scene in the process of devising a plan to recover the victim who was entrapped under a narrow bridge in approximately 6 feet of water. Officer Urbano and Munoz joined in the planning and recommended using some of the rope techniques that they had just learned in the Fast-Track 120 class.

Fast-Track 120 Students Put Skills to Test in Recovery OperationThe recovery plan involved the use of a mainline attached to the NM State Police Diver and a 4:1 rigged and ready to be “piggybacked” on the main line in case the diver needed immediate retrieval.

The Diver attached a second line to the recovery bag that was placed around the victim, and the Diver exited the arroyo. Officers Munoz and Urbano attached the 4:1 to the victim’s line and removed the individual from the arroyo. All of the systems used were anchored to multiple vehicles that had responded to the scene.

Fast-Track 120 Students Put Skills to Test in Recovery Operation“Obviously, this makes us very proud that our students can take the techniques learned in our classes and put them to immediate use. Unfortunately, this was a recovery operation. However, we hope that everyone involved was just a little bit safer thanks to the training and capabilities of Officers Urbano and Munoz,” stated Roco Chief Instructor Tim Robson, who led the 120-hour training class.

 

Fast-Track 120 Students Put Skills to Test in Recovery OperationHere's a photo of the scene of the recovery near an arroyo in Albuquerque, New Mexico.

An arroyo is defined as a small, deep gully or channel of an ephemeral stream. Arroyos usually have relatively flat floors and are flanked by steep sides consisting of unconsolidated sediments. They are usually dry except after heavy rainfall. In this area, there are several miles of open-air concrete lined drainage channels that drain an area into the main North Diversion Channel, a tributary of the Rio Grande joining upstream of Albuquerque.

Signs are posted at the constructed arroyos warning to keep out due to danger of flash flooding and other obvious dangers.

Alternate Lashing for SKED Stretcher

Wednesday, July 24, 2013

How to Videos: PATIENT PACKAGING

Roco SKED Method - Confined Space Technique

Roco Rescue Director of Training Dennis O'Connell explains alternate rigging techniques that have been developed in conjunction with SKEDCO for using the SKED stretcher in confined spaces.

Roco SKED Method - Vertical Lift with Backboard


Roco Rescue Director of Training Dennis O'Connell explains the Roco approved method of rigging a SKED stretcher for vertical lift while using a backboard.



Roco SKED Method - Traditional Method


Patient Packaging Technique from the Roco Rescue Channel features the manufacturer's approved method for traditional vertical lift using the SKED stretcher.

Roco Chief Speaks at VPPPA IV Conference

Wednesday, June 19, 2013

Roco Chief Speaks at VPPPA IV ConferenceRoco Chief Instructor Pat Furr is conducting two workshops at the VPPPA IV Conference in Myrtle Beach this week. The first workshop, Elements of a Comprehensive Managed Fall Protection Program, clarifies OSHA and ANSI guidelines regarding the employer's responsibility to develop a comprehensive managed fall protection program.

The topic of the second workshop is Confined Space Rescue and will provide guidance that employers may use to identify, select, and evaluate a confined space rescue service as required by OSHA 1910.146.

Chief Furr is available for consulting your organization on either of these topics.

In this video, he discusses Safe Entry Into Permit Required Confined Spaces.

 

Q&A: Tech Panel Answers

Tuesday, June 18, 2013

Q&A: Tech Panel AnswersQUESTION FROM OUR READER:
In the new Stokes lashing video the instructor tied 2 butterfly knots into the webbing. Can this also be done with 2 figure eight knots in the webbing? Also I was looking for the information on Sked lashing, with by-passing the top 2 grommets and starting with the first 2 on the sides.

ANSWER:

The answer to your question about substituting figure-8 knots for butterfly knots in the webbing for the stokes lashing is Yes you can. You could also use two separate pieces of webbing to accomplish the same goal. Check out our Skedco Alternate Lashing Guide for details.

Suspension Trauma Explained: Safety Poster from Roco

Monday, April 22, 2013

Roco Rescue Suspension Trauma PosterWhat exactly is suspension trauma? How does it occur? And what can be done to prevent it?

Suspension Trauma - otherwise known as harness pathology, distributive shock, or orthostatic intolerance - has recently been identified by OSHA as a workplace hazard particular to Authorized Workers using personal fall arrest systems (PFAS). More and more employers are becoming aware of this workplace hazard and are taking appropriate steps to protect their employees. The range of understanding on the cause of the hazard, as well as how to protect against it, is pretty vast.

Our new Suspension Trauma Safety Poster is a tool to raise awareness of this hazard. It illustrates the pathological path that a fallen suspended worker may experience. Please share with colleagues, fellow safety professionals and especially workers that use PFAS. It could save a life.

The rate at which suspension trauma develops varies from individual to individual and is not reliably predictable. However, there are factors that influence the potential for suspension trauma as well as the speed of onset. Here are a few examples:

  • Underlying physical condition of worker including any pre-existing respiratory or cardiac conditions;
  • Worker’s ability to handle stress and anxiety;
  • Harness selection, fit, and adjustment;
  • Traumatic injuries that may have occurred during or before the fall; and,
  • Knowledge and the use of equipment or techniques to delay the onset of suspension trauma such as temporary leg stirrups or simply “bicycling the legs.”

Roco also offers a course called Rescue From Fall Protection to educate rescuers who respond to suspended workers.

Pathological Effects of a Fallen Worker in Danger of Suspension Trauma


For those of you who prefer a more detailed explanation, here's the narrative from Roco Chief Pat Furr. 

1. Leg Circulation: A fall arrest harness does a great job of dissipating the energies generated during a fall arrest through the long axis of the human body. After all motion has stopped, that same harness – particularly the dorsal attachment configuration – will most likely impose pressure to the femoral vein, which is the primary blood vessel that returns blood from the legs towards the heart. In fact, in order to pass certification testing, these harnesses must not allow the test mannequin to assume greater than a 30 degree forward lean upon suspension. Any degree of forward lean will exert leg strap pressure on the femoral vein which impedes blood return. To compound this, the human body relies on what is known as the muscle/venous pump to assist the blood return from the legs to the heart. In suspension, the worker often forgets to bicycle their legs to create this muscle/venous pump. The trapped blood in the legs creates what is known as distributive shock as more and more blood is trapped in the legs; there is less to circulate for the rest of the body (brain, heart, lungs, and kidneys). Additionally, this blood becomes highly acidic and toxic with metabolic wastes.

2. Heart Circulation: As the body goes into distributive shock, the heart must increase the rate and strength of its contractions to compensate. To compound this, the suspended worker may be experiencing a high degree of fear and anxiety, which releases adrenalin into the bloodstream which also causes the heart to work harder and faster. This places increased demands on the heart, which is receiving less blood flow and thus less oxygen. The heart becomes irritable and is prone to localized tissue damage, dysrhythmias or both. This is especially a concern once the worker is rescued and the toxic blood is allowed to surge from the legs to the irritable heart. This is known as reflow syndrome and has caused several victims to go into sudden cardiac arrest upon rescue.

3. Brain Circulation: As the victim goes into distributive shock, or worst case, suffers cardiac arrest, the brain is deprived of adequate blood supply and this can lead to unconsciousness. If the victim faints the airway can be blocked by the head position or even by a poorly adjusted harness that allows the chest strap to block the airway. That is a difficult statement to write into a fatality report “Cause of Death: Strangulation by Victim’s Own PPE.”  If the victim’s heart stops, we can expect permanent brain damage or death in as little as four minutes.

So it should be obvious that a prompt rescue capability must be ensured by any employer that has Authorized Persons using PFAS. This can be accomplished in many ways. Roco has a variety of training courses that are specifically designed to provide that prompt rescue capability for fallen/suspended workers.

We also worked with CMC to design a new harness to protect suspended workers from suspension trauma.

For more information please contact Roco Rescue at 800-647-7626 or submit a question to our Tech Panel.

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!