<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Safe Confined Space Entry - A Team Approach

Wednesday, September 26, 2018

Having been involved in training for 30 years, I have had the opportunity to observe how various organizations in many different fields approach confined space entry and rescue. And, when it comes to training for Entrants, Attendants and Entry Supervisors, the amount of time and content varies greatly.

Roco Rescue CS EntryMost often, training programs treat the three functions as separate, independent roles locked into a hierarchy based on the amount of information to be provided. However, it’s critical to note, if any one of these individuals fails to perform his or her function safely or appropriately, the entire system can fail – resulting in property damage, serious injury or even death in a confined space emergency.

Before I go any further, I have also seen tremendous programs that foster cooperation between the three functions and use more of a confined space “entry team” approach. This helps to ensure that the entry is performed safely and efficiently.

It also allows all parties to see the overall big picture of a safe entry operation.
In this model, all personnel are trained to the same level with each position understanding the other roles as well. This approach serves as “checks and balances” for confirming that:

• The permit program works and is properly followed;
• The permit is accurate for the entry being performed;
• All parties are familiar with the various actions that need to occur; and,
• The team knows what is expected of each other to ensure a SAFE ENTRY!

However, I am often surprised to find that Entrant and Attendant personnel have little information about the entry and the precautions that have been taken. They are relying solely on the Entry Supervisor (or their foreman) to ensure that all safety procedures are in place. If you have a well-tuned permit system and a knowledgeable Entry Supervisor, this may be acceptable, but is it wise? As the quality of the permit program decreases, or the knowledge and experience of the Entry Supervisor is diminished, so is the level of safety.


Roco CS Entry Supervisor & AttendantIn my opinion, depending exclusively on the Entry Supervisor is faulty on a couple of levels. First of all, the amount of blind trust that is required of that one person. From the viewpoint of an Entrant, do they really have your best interest in mind? And, we all know what happens when we “ass-u-me” anything! Plus, it puts the Entry Supervisor out there on their own with no feedback or support for ensuring that all the bases are covered correctly. There are no checks and balances, and no team approach to ensuring safety.

Looking at how 1910.146 describes the duties of Entrant, Attendant and Entry Supervisor tends to indicate that each role requires a diminishing amount of information. However, we believe these roles are interrelated, and that a team approach is far safer and more effective. To illustrate this, we often pose various questions to Entrants and Attendants out in the field. Here is a sample of some of the feedback we get.

We may ask Entrants…Who is going to rescue you if something goes wrong? Has the LOTO been properly checked? At what point do you make an emergency exit from the space? What are the acceptable entry conditions, and have these conditions been met? How often should the space be monitored? Typically, the answer is, “I guess when the alarm goes off, or when somebody tells me to get out!”

When we talk to Attendants about their duties, we often find they only know to “blow a horn” or “call the supervisor” if something happens, or if the alarm on the air monitor goes off. We also ask…What about when the Attendant has an air monitor with a 30 ft. hose, and there is no pump? Or, if you have three workers in a vertical space and the entire rescue plan consists of one Attendant, a tripod and a winch, plus no one in the space is attached to the cable – what happens then?
  
These are very real scenarios. Scary, but true. It often shows a lack of knowledge and cooperation between the three functions involved in an entry. And, that’s not even considering compliance!
We ask, would it not be better to train your confined space entry team to the Entry Supervisor level? Wouldn’t you, as an Entrant, want to know the appropriate testing, procedures and equipment required for the entry and specified on the permit? Would it not make sense to walk down LOTO with the Attendant and Entrant? This would better train these individuals to understand non-atmospheric hazards and controls; potential changes in atmosphere; or, how to employ better air monitoring techniques. All crucial information.

More in-depth training allows the entry team to take personal responsibility for their individual safety as well as that of their fellow team members. It also provides multiple views of the hazards and controls including how it will affect each team member’s role. Having an extra set of eyes is always a good thing – especially when dealing with the hazards of permit spaces. Let’s face it, we’re human and can miss something. Having a better-trained workforce, who is acting as a team, greatly reduces this possibility.

Roco Rescue Remote MonitoringMany times, we find that the role of Attendant is looked upon as simply a mandated position with few responsibilities. They normally receive the least amount of training and information about the entry. However, the Attendant often serves as the “safety eyes and ears” for the Entry Supervisor, who may have multiple entries occurring at the same time. In reality, the Attendant becomes the “safety monitor” once the Entry Supervisor okays the entry and leaves for other duties. So, there’s no doubt, the better the Attendant understands the hazards, controls, testing and rescue procedures – the safer that entry is going to be!

As previously mentioned, training requirements for Entrant, Attendant and Supervisor are all over the board with little guidance as to how much training or how in-depth that training should be. Common sense tells us that it makes better sense to train entry personnel for their jobs while raising expectations of their knowledge base.

OSHA begins to address some base qualifications in the new Confined Spaces in Construction standard (1926 Subpart AA) by requiring that all confined spaces be identified and evaluated by a “competent person.” It also requires the Entry Supervisor to be a “qualified person.” Does the regulation go far enough? We don’t think so, nor do some of the facilities who require formal, in-depth training courses for their Entrant, Attendant and Entry Supervisor personnel.
 
OSHA 1926.32 DEFINITIONS:
• Competent person: “One who is capable of identifying existing and predictable hazards in the surroundings or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them.” 
• Qualified person: “One who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.” 

So, do yourself a favor…go out and interview your Entrants and Attendants on a job.
Find out how much they do (or don’t) understand about the entry and its safety requirements. Do not reprimand them for not knowing, as it may not be their fault. It may be a systemic deficiency and the training mentality of distributing a hierarchy of knowledge based on job assignment.

Simply put, we believe that arming the entry team with additional information results in safer, more effective confined space operations. After all, isn’t that what it’s all about? GO TEAM!

Additional Resources:
• Download our Confined Space Entry Quick Reference Checklist. This checklist reiterates the value of approaching permit-required confined space entries as a team. In addition to OSHA-required duties and responsibilities for the three primary roles, we have included our recommendations as well. These are duties that we feel are important for the individual(s) fulfilling that role to be knowledgeable and prepared to perform if need be.

Safe Entry Workshop: Entrant, Attendant & Entry Supervisor is now available. See the full course description for details.

Fatal Trench Collapse Results in Severe Violator Status

Tuesday, September 25, 2018

An Ohio excavating company faces $202,201 in penalties and was placed in OSHA’s Severe Violator Enforcement Program1 after an employee suffered fatal injuries in a trench collapse. 

Inspectors found that the company was working in trenches up to 16-feet deep without adequate cave-in protection. The company failed to: use protective systems to prevent a cave-in; remove accumulating water; properly use ladders to enter and exit the trench; prevent employees from working beneath a suspended trench box; ensure employees wore hard hats; and make provisions for prompt medical attention in the event of injury.

“A trench can collapse in seconds, burying workers under the weight of thousands of pounds of soil,” said Ken Montgomery, OSHA Cincinnati Area Office Director. “This tragedy was preventable, and could have been avoided if the employer had installed required protective systems to prevent a trench cave-in.”

Here's a video showing multiple violations like the ones described here.

1OSHA's Severe Violator Enforcement Program (SVEP) concentrates resources on inspecting employers who have demonstrated indifference to their OSH Act obligations by committing willful, repeated, or failure-to-abate violations. Enforcement actions for severe violator cases include mandatory follow-up inspections, increased company/corporate awareness of OSHA enforcement, corporate-wide agreements, where appropriate, enhanced settlement provisions, and federal court enforcement under Section 11(b) of the OSH Act. In addition, this Instruction provides for nationwide referral procedures, which includes OSHA's State Plan States. This instruction replaces OSHA's Enhanced Enforcement Program (EEP).

Inspection Process for Roco Training Ropes

Tuesday, August 28, 2018

Inspection Process for Roco Training RopesQuestion: We recently had a student ask how our training rope is monitored for wear and tear because of its extensive use...

Answer: Good question, and it’s a big job for us, no doubt. We’ve used and inspected a lot of rope in the past 35+ years, but this aspect of life safety can never be overlooked or taken lightly. As always, we urge everyone to carefully follow the care, use and inspection guidelines provided by their rope manufacturer. For added safety and as standard practice, we also use secondary back-up ropes and hardware in all field activities. 

Because we train thousands of students per year, we must accept the fact that there are numerous opportunities for our ropes to be exposed to wear such as being stepped on or exposed to dirt and gravel. It is for these reasons that we perform rigorous inspection of the ropes before and after use. Plus, we also conduct an annual competent person equipment inspection as recommended by NFPA.
 
As added safety, we also expect our students to do their part in monitoring the equipment during a class, and that’s why we’re glad you brought this up.
We teach and enforce rope care and inspection of all equipment, including ropes, in all of our classes. Inspections are accomplished at multiple times during any given class including during inventory. Additionally, all equipment is inspected by a Roco employee at the conclusion of each class. If there are any signs of damage or degradation that would render the rope unserviceable according to the manufacturer’s instructions for use, that rope will be taken out of service.

Of course, we’ve seen some rope damaged over the years, which is to be expected with the use our rope receives. However, to my knowledge, we’ve never had a rope failure. We’ve seen cut sheaths and sheath slippage, evidence of broken core fibers, and other damage that failed the rope inspection. But, not once, have we had a rope fail while it was being used to support a life load. The construction and the minimum breaking strength requirements of life safety rope provide a very substantial margin of safety. And, there again, we also have the redundancy of a back-up system in place.

All manufacturers of life safety rope are required by NFPA 1983 (2017 edition) to provide the following inspection criteria information in their instructions for use:

(1) Rope has not been visually damaged.
(2) Rope has not been exposed to heat, direct flame impingement, or abrasion.
(3) Rope has not been subjected to impact load.
(4) Rope has not been exposed to liquids, solids, gasses, mists, or vapors of any chemical or other material than can deteriorate rope.
(5) Rope passes inspection when inspected by a qualified person following the manufacturer’s inspection procedures both before and after each use.

The following inspection tips are provided by PMI Life Safety Rope:
Inspection Process for Roco Training Ropes

HOW TO INSPECT YOUR ROPE

LOOK AT IT.... ALL OF IT!
Start at one end and look at every inch of the rope. Watch for signs that might indicate possible damage such as discoloration, chemical odors, abrasion, cuts or nicks in the outer sheath and visible differences in the diameter of the rope in one area in relation to the rest of the rope.

WRAP IT IN SMALL LOOPS AND LOOK!
Wrap the rope around your hand to form small loops at different random points along the ropes length. Look at these small loops as you make them, the consistency of the loop should be uniform throughout. If it’s not, you might have a problem with the rope’s core.

FEEL THE ROPE!
While you are looking at every inch of the rope, run it through your bare hands and feel it for changes that might indicate damage to the core. Changes may include any inconsistencies in rope diameter, soft or “mushy” spots, or extraordinarily stiff areas.

WRITE IT ALL DOWN!
Write the results of your inspection on the Rope Log included with your rope. Be sure to include anything you found in your inspection that might be or become a concern and document other important information about the rope such as an occurrence of uncontrolled or excessive loading, rope older than 10 years, contact with harmful chemicals, and history of use.

IF IN DOUBT, THROW IT OUT!
If you are not sure about the integrity of a rope........DON’T USE IT!
Consult the manufacturer if you need help.

So, thank you again for asking about the rope used continuously in our training programs. Even with our many years of experience, we do not take rope safety margins as a license to misuse our ropes. And that is why we are diligent in caring for and inspecting all of our equipment including the ropes. 

Know When NOT to Enter a Confined Space!

Friday, August 17, 2018

Know When NOT to Enter a Confined Space!There are countless injuries and deaths across the nation when workers are not taught to recognize the inherent dangers of permit spaces. They are not trained when "not to enter" for their own safety. Many of these tragedies could be averted if workers were taught to recognize the dangers and know when NOT to enter a confined space.

While this incident happened several years ago, it emphasizes the senseless loss of life due to a lack of proper atmospheric monitoring and confined space training. Generally, the focus for training is for those who will be entering spaces to do the work. However, we also must consider those who work around confined spaces – those who may be accidentally exposed to the dangers. Making these individuals aware of the possible hazards as well as to stay clear unless they are properly trained.

Note: This case summary from the New York State Department of Health goes on to say that the DPW had a confined space training program but stopped the training after the last trainer retired.

CASE SUMMARY - TWO (2) FATALITIES
A 48-year-old male worker (Victim I) employed by the Department of Public Works (DPW) and a 51-year-old male volunteer firefighter (FF Victim II) died after entering a sewer manhole located behind the firehouse. In fact, the Fire Chief was on scene because he had been called by the DPW general foreman to unlock the firehouse and move the firetruck so it would not be blocked by the DPW utility truck working at the manhole. Another firefighter also arrived to offer assistance, he later became FF Victim II.

The manhole was 18 feet deep with an opening 24-inches in diameter (see photo above). Worker Victim I started climbing down the metal rungs on the manhole wall wearing a Tyvek suit and work boots in an attempt to clear a sewer blockage. The DPW foreman, another firefighter and FF Victim II walked over to observe. They saw Victim I lying on the manhole floor motionless. They speculated that he had slipped and fallen off the rungs and injured himself. The Fire Chief immediately called for an ambulance.

Meanwhile, FF Victim II entered the manhole to rescue Victim I without wearing respiratory protection. The other firefighter saw that FF Victim II fell off the rungs backwards while he was half way down and informed the Fire Chief. The Fire Chief immediately called for a second ambulance and summoned the FD to respond. FD responders arrived within minutes.

The Assistant Fire Chief (AFC) then donned a self-contained breathing apparatus. He could not go through the manhole opening with the air cylinder on his back. The cylinder was tied to a rope that was held by the assisting firefighters at the ground level. The AFC entered the manhole with the cylinder suspended above his head. He did not wear a lifeline although there was a tripod retrieval system. He secured FF Victim II with a rope that was attached to the tripod.

FF Victim II was successfully lifted out of the manhole. The AFC exited the manhole before a second rescuer entered the manhole and extricated Victim I in the same manner. Both victims were transported to an emergency medical center where they were pronounced dead an hour later. The cause of death for both victims was asphyxia due to low oxygen and exposure to sewer gases.
 
Contributors to the Firefighter's Death:
• Firefighters were not trained in confined space rescue procedures.
• FD confined space rescue protocol was not followed.
• Standard operating procedures (SOPs) were not established for confined space rescue.

Know When NOT to Enter a Confined Space!The DPW had developed a permit-required confined space program but stopped implementing it in 2004 when the last trained employee retired. They also had purchased a four-gas (oxygen, hydrogen sulfide, carbon monoxide and combustible gases) monitor and a retrieval tripod to be used during the training. It was reported that a permit-required confined space program was never developed because DPW policy “prohibited workers” from entering a manhole. However, the no-entry policy was not enforced. Numerous incidents of workers entering manholes were confirmed by employee interviews.

This incident could have been much worse. Training is the key, whether it’s just an awareness of the dangers in confined spaces or proper entry and rescue procedures. In this case, the victims had no C/S training even though they may have to respond to an incident, and the worker had not had on-going training through out his career. Periodic training to keep our people safe and aware of proper protocols is key to maintaining a safe work force.

Unfortunately, training is usually one of the first things to be cut when the budget gets tight; however, after an incident, it usually becomes the primary focus. Often the lack of training is determined to be a key element in the tragedy.
Investing in periodic training for the safety of your workforce includes spending the time and money to keep your trainers and training programs up to speed and in compliance. The old saying, “closing the barn doors after the horses escaped,” is no way to protect your people – a little investment in prevention goes along way in preventing these tragedies.

One last comment on my biggest pet peeve – proper, continuous air monitoring. This one step can reduce the potential of a confined space incident by about 50%! Don’t take unnecessary chances that can be deadly.

 

Rescue Toolbox: Portable Anchors

Thursday, August 9, 2018

PJs use a tripod to extract a patient from a confined space.Portable Anchors – Bipods, Tripods, Gin Poles, and Quads

As rope rescue technicians, we learn early to look for that perfect high-point anchor. You know the one. It’s easy to sling, positioned perfectly in line with the portal and the rescue system, and rated for the anticipated load. We all know that they can be elusive, to say the least.

In locating high-point anchors, we learn to first look straight up for an anchor strong enough and high enough to allow us to clear a vertical litter out of a space (requires about 9 feet). Then we look left and right. Are there beams or substantial anchors high enough and positioned to allow a high-point bridle for our lift? Or maybe there’s an anchor positioned were we may be able to “cowboy” a rope up and over a beam and adjust our end-of-line knot at the appropriate height; and then tie it back to another anchor (extended anchor technique).

But what about those times where we need a high-point anchor, and there is nothing, nada, zilch? No beams, trees, nothing! That’s when we bring our own high-point, also called a portable anchor. 

Portable anchors come in a variety of configurations, the most common being tripods. Even tripods are not all created the same. Some are rated only for equipment, others have different allowable working loads, and they come in a variety of heights.

There is also the option for bipods, quadpods, monopods (gin poles) and some devices that can transform into all of these configurations. They can be centered over a portal for straight, vertical lifts (tripods/quadpods), straddle the plumb line (bipods), or provide a single high-point in an area with a small foot print (monopods). They can even be designed to cantilever out over an edge to provide a clear path for the ropes and ultimately the rescue package. Determining which one to use would be based on your team’s needs and your type of response area.

So, let’s talk about some of the portable anchors that we like to use, including their capabilities and limitations.

Tripods

Rescue Toolbox: Portable Anchors

The SKED-EVAC® Tripod is a simple tubular aluminum tripod with cast header and feet. It extends to a maximum height of 10 feet at the anchor connection points, which gives a good bit of clearance for vertical litters to clear the bottom edge. At full extension (10 feet), the tripod is proof loaded to 5,280 pounds. The SKED tripod is simple to set up, includes a chain to run through the feet to keep the load stresses off the cast header, includes three anchor points, and adjusts in height for situations where there isn’t enough headroom for full extension.

Eccentric Loading and Resultant Forces

Tripods as well as other portable anchors must be respected when it comes to the “direction of pull” on the rescue system and the relationship to the position of the load. Here are a few terms to be familiar with:

Axial loading: The object is loaded in line with the normal fixed axis point (the center of a tripod, equal force on all legs).
Eccentric loading: The load is no longer axial and is offset from the axis point. (The system puts side-load forces on the anchor, or the load is moved out from under the axis point.)
Resultant: This is the relationship between forces acting on an object. (It is the relationship between the load and the vectoring forces of the rescue system from the portable high-point; it is the bisection of this angle.)

The “rule of thumb” for tripods is the resultant forces must remain inside the footprint of the tripod. That is, if the rescue load is pulling straight down (plumb/axial), and the rescue system vectoring forces are angled outside of the footprint of the tripod, then where does the bisection of that angle fall?

Imagine drawing a circle that connects the legs of the tripod. As long as the load and the rescue system remain inside that circle, the resultant will be acceptable, and the tripod will remain axially loaded and not tip over.

There are some techniques to overcome this limitation such as a directional pulley located within the footprint of the tripod. Another technique, which we call the “Pass Through” method (see illustration at bottom), allows counter acting resultant forces to stabilize the tripod. If your haul line is angled too far outside the footprint of the tripod, or the load is moved outside the tripod footprint, the entire tripod is at risk of toppling over (eccentric loading), which could spell disaster.

So, to keep things simple, we often recommend that all lines are kept within the footprint or to add a low directional within the footprint. This provides a small margin for error when hauling or setting up a directional. Technically, you can set up the directional outside the footprint (or pull the haul line outside the footprint) as long as the resultant force is still inside. 

Just remember to envision all lines as though they were loaded before you load the system. We’ve seen plenty of low directionals that were set up perfectly; however, the anchor strap actually allowed them to fall outside the footprint once loaded. As we like to say, "keep it safe and simple!"(KISS) And to play it safe, keep all lines within the footprint.

Multi-Use Portable Anchors

Portable anchors have progressed way beyond the tried-and-true tripods. We are seeing some pretty versatile systems that can be configured as quadpods, bipods, even monopods. These modern systems provide capabilities that go beyond straight vertical lifts while straddling the hole or entry into the rescue subject’s location.

Rescue Toolbox: Portable Anchors

As with most devices that provide additional or alternate capabilities such as monopods and bipods, they are generally more complex and require additional training to fully understand the forces being applied. The ability to extend an anchor point out over the edge of a containment berm, or a cliff edge in a wilderness rescue, will greatly reduce friction on haul lines and reduce rope abrasion, providing clear movement of the rescue package coming up or going down over the edge. This is something that a tripod just cannot provide. But a better mastery of the effects and relationships of the forces being applied needs to be obtained. Understanding and identifying the resultant force is critical in these situations.

These new generation multi-purpose devices, such as the TerrAdaptor™ or the Arizona Vortex, are designed to be used as tripods, bipods, monopods; or in the case of the TerrAdaptor, as a quadpod. They are third party (UL) certified to NFPA 1983 in symmetric tripod and quad-pod configurations. In addition to the straight vertical capabilities, these devices also provide an “over-the-edge” capability. 

For tight areas such as on catwalks, the A-Frame configuration or bipod can provide that portable high-point where a tripod just can’t fit. For extremely tight quarters or when lightweight gear is needed, they can be rigged as a monopod or gin pole. This requires some advanced knowledge of rigging and tiebacks; but, rigged correctly, it provides high strength and a high-point in places no other system would fit.

Sometimes the configuration of the structure or the height of your portable anchor does not allow enough overhead to clear the foot-end of a vertical litter. In instances like this, you may need a simple mechanical advantage assist that is attached low on the litter, or a modified Pick & Pivot technique where the lifting point on the litter is changed from the head to the feet once the litter reaches an edge to allow recovery.

Rescue Toolbox: Portable Anchors

Smaller, Lighter, Stronger

To meet the demands of the USAF Pararescuemen (PJs), Roco worked with Skedco to develop the Roco Tactical Mini-Tripod. 

Reaching about 5 feet at maximum extension with removable legs, it is small enough to carry in the team’s rucksacks, if needed. Its short height also makes it the strongest rescue tripod on the market. Additionally, the removable legs provide the ability to use it as a bipod or A-frame.

Utilizing some simple techniques, a vertical litter patient can be removed from a space with the Roco Mini-Tripod just as easily as with a full-size.

The lighter weight, compact size, and full functionality allow teams with limited manpower and resources to operate without limited capabilities. (Note: in 2023, the Roco Mini Tripod was updated and replaced by Roco's Lowrider™ Compact Rescue Tripod.)

Conclusion

It is important to know what your needs are regarding portable high-point anchors. Complete your rescue preplans. And, if they reveal the need to cantilever out over an edge, or that a bi- or monopod may be required, you may want to consider a multi-functional, portable high-point system that provides capabilities beyond a tripod. Whichever device you choose, always make sure you get the proper training. The unexpected loss of a high-point during training or a rescue could be disastrous. So, be safe, know your equipment and know how to use it.

Check out our selection of tripods in our Gear Shop; or, if you need additional training, review our listing of courses. If you would like to speak with one of our instructors, please call us at 800-647-7626 or email info@RocoRescue.com

Here are several tripod techniques from our new Roco Pocket Guide:

Simple B&T M/A with bottom directional.

Rescue Toolbox: Portable Anchors 

High-point pulley & bottom directional used with piggyback or Z-rig M/A systems.

Rescue Toolbox: Portable Anchors 

 

 

 

 

 

 

 

 

 


Pass-through technique used with piggyback or Z-rig M/A systems.

Rescue Toolbox: Portable Anchors
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!