“Advanced” Confined Space Rescue

Tuesday, June 11, 2019

By Chris Carlsen, Albuquerque Fire Department

Having worked and been an instructor in the rescue field, I am often asked, “what are some advanced rescue techniques in confined spaces?” My response is always, “It depends where you think you are as a team, because advanced can mean many different things.”

Obviously there are confined space rescue scenarios that require a higher level of proficiency and teamwork than others. However, I like to begin by asking a team to do a self-assessment, as outlined below, and to think of “advanced” confined space rescue as anything that advances the ability of a team to perform as rescuers.

Is your team in the CRAWLING stage, meaning you have a trained team but the only time you touch a piece of equipment or do some rigging is during an annual refresher? Then “advanced” for your team means relearning the fundamentals every year. Practicing anchor rigging, building basic mechanical advantage systems, packaging patients in litters and drag devices, setting up SCBA or SAR systems and understanding the importance of atmospheric monitoring and ventilation strategies. All the basic tools you need to get the job done!

Is your team WALKING, having dedicated team members with solid fundamentals that attend regular training evolutions? Then “advanced” can mean organizing team equipment for a more efficient response, pre-rigging standard set-ups for rapid deployment, practicing compound and/or complex systems, identifying and preplanning confined spaces, defining team roles in an ICS type structure, and conducting full scenarios from response to termination.

Is your team RUNNING, with experienced team members who are looking to be challenged? Advanced for you is getting creative and locating spaces that are difficult to reach, difficult to access, and/or challenging to work in. Teams like this will benefit from having time restraints on training exercises to build pressure and increase the speed with which people work. Other ideas would be to limit the availability of equipment so the team has to problem-solve and prioritize actions, or add new pieces of equipment that provide more efficiency or increase safety.

Every one of the teams I just described is capable of making a successful confined space rescue today. But first, what do we consider a successful confined space rescue? For me, it is performing the rescue while providing for the safety of our team and the persons we are responding to. If we can do that, then we have been successful.

Over and above the basics of a successful rescue, what separates good teams from better ones is their efficiency and ability to solve complex problems. The more complex the rescue scenario is, the less efficient the team is going to be… unless they have experienced the scenario before or can relate it to something they have done. And where can they get experiences needed to build confidence and the mental files they can draw from? Training, training, and oh yeah training! The best teams build a sort of muscle memory that derives from all the exposure to various situations they have experienced. I have a quote scribbled on my wall that says:

“A rescue isn’t successful because of what you did today, it was the years of training that led up to the rescue that made the difference.”

I’m not sure who said that, but when I read it, it stuck, and I have spent my professional career trying to make sure I was ready for a rescue today. So I ask, are you ready? Do you know how complex the next rescue problem is going to be?

In order to be ready, we must have a solid grasp of the basics for confined space rescue. I’m not talking about building mechanical advantage systems or selecting the best anchor point. Yes, those skills are necessary, but I’m talking about managing your TIME. Because in confined space rescue, time is one of the greatest factors between a rescue or a recovery. One of Roco Rescue’s great Chief Instructors, Mike Adams, really helped me understand this concept in a simple way. He broke the entire rescue down into four parts.

  1. Put your hands on the patient: Everything you do initially must drive towards this goal. The faster you can do that, the faster you will have a complete understanding of the complexity of the rescue. Keep it simple and get in there once you have provided for the safety of your rescuer.
  2. Care and Package: Do good patient care, and treat the things that are life threatening first. Once you know the life threat, then you’ll know how much time you have to work with. Then package for the environment and the injury.
  3. Extricate: Build a world class rescue system or just put your hands on the patient and move! Either way your team should be ready to perform once the patient is ready to move. The type of space and the orientation of the patient will usually dictate the how and what.
  4. Lift and/or Lower and turn them over: Once the patient is out of the space, lift / lower them to ground level and turn them over to EMS. This is typically less hazardous but still just as important if you have a critical patient.

Focus on these concepts in your next confined space training; see how well your team performs, and ask plenty of questions.

Did you stumble a little bit? Was there some confusion about the plan or about who was doing what job? If so, that’s ok! Talk about it, sort it out and do it again - that is what training is for! On the other hand, maybe you cruised right through the scenario and everyone was pretty quiet. If so, perhaps that’s because your jobs are well defined and your team knows what is always coming next. Or was it just because you have done the same drill from the same space for the last 10 years? Either way it’s time to turn up the heat and start challenging your team to get them to the next level.

If you’ve trained with us at Roco Rescue, then you’re familiar with our version of the K.I.S.S. principle: “Keep It SAFE and SIMPLE.” I’ve used it many times, and it works, but as our depth of knowledge grows and the complexity of the incident grows, the “devil” is really in the details. The masters of any craft only became masters through practice. So you want to know some Advanced Confined Space Rescue Techniques? You want to be a Confined Space Rescue Technician?

Train, Learn, Practice.

And as always, be safe.

 

Chris Carlsen resides in Albuquerque, NM and has been a firefighter with Albuquerque Fire Rescue since 1998.  He currently works as the Heavy Technical Rescue Program Manager within Special Operations.  Chris took his first Roco course in 2000 and became part of Roco’s instructional cadre in 2006.  As a Roco Rescue Chief Instructor he leads courses in rope, confined space, trench and structural collapse rescue.

read more

Non-Entry Confined Space Rescue…Are You Sure?

Tuesday, May 07, 2019
by Pat Furr, Safety Officer & VPP Coordinator

There are three generally accepted types of confined space rescue: self-rescue, non-entry retrieval, and entry rescue. Just as with the hierarchy of hazard mitigation, confined space rescue should be approached with an ascending hierarchy in mind. 

  1. Self-rescue is typically the fastest type and eliminates or at least greatly reduces the chance that anyone else will be put at risk. For these reasons, it is the first choice, but it is unrealistic to think that an entrant would be able to rescue themselves in all situations.
  2. Non-entry retrieval is the next choice. OSHA stipulates that non-entry retrieval must be considered as a means of rescue – more on that shortly.
  3. Entry rescue is the last choice, largely because it exposes the rescuers to the same hazards that the original entrant faced.

Non-Entry Confined Space Rescue…Are You Sure?

OSHA recognizes the inherent danger of entry rescue, which is why the organization mandates “retrieval systems or methods shall be used whenever an authorized entrant enters a permit space.” However, OSHA goes on to qualify this statement with two very important exceptions. OSHA requires non-entry retrieval, “unless the retrieval equipment would increase the overall risk of entry or would not contribute to the rescue of the entrant.”  Let’s examine each of these two provisions more closely... 

  1. Non-entry retrieval is required “…unless the retrieval equipment would increase the overall risk of entry.” For example, if the retrieval line would create an entanglement hazard that would impede the entrant’s ability to exit the space, then the retrieval system should not be used and entry rescue should be the choice.
  2. And non-entry retrieval is required unless the equipment “…would not contribute to the rescue of the entrant.” The key here is that the non-entry method employed must be viable. It must work when called into action.

For non-entry retrieval systems, we are relying on that retrieval line to exert forces on the entrant to pull them out of the space without help from any other device or human intervention within the space. It must perform without someone inside the space maneuvering the victim or otherwise providing assistance to the retrieval system. It has to work independently of any other forces other than what is generated from outside the space. This extremely important point is often overlooked and has resulted in many fatalities. Sadly, many of those fatalities were the would-be rescuers that attempted entry rescue when the retrieval system failed to do its intended job.

Situations that may render the retrieval system useless would be any configuration or obstruction inside the space that would prevent the system from pulling the victim clear of the space in an unimpeded manner. This could be pipework or obstructions on the floor for a horizontal movement. Likewise, pulling an unconscious victim around corners may render a retrieval system ineffective. If the entrant moves over any edge and down into a lower area offset from an overhead portal even at moderate angles, the retrieval system will probably not be able to pull an inert victim up and over that edge, even if the drop were only a foot or so.

It must be clearly understood that retrieval systems may quite possibly be applying forces on a limp human body, which, as harsh as this sounds, becomes a sort of anchor. It requires a very thorough and honest evaluation of where the entrant will be moving in the space in order to perform their planned work, and what obstructions or structural configurations are in that path. If there is any possibility that the system will not be able to pull an unconscious, inert victim along that path, then the retrieval system is NOT viable.

Human Nature vs The Best Laid Plans - An Example

Okay, so you have done a thorough and honest evaluation of the space, its configuration, and internal obstructions and determined that there is a clear path from the entrant’s “planned” work area, which is offset ten feet from the overhead portal eight feet above. Clearly, the retrieval system will be able to pull the victim out of the space should the need arise. Enter human nature, and with that comes bad decisions. Murphy’s Law has a very nasty way of changing things for the worse. 

What if, in the course of the planned work, our entrant drops his wrench down into a sump immediately adjacent to his work zone but further from the overhead portal? The fixed ladder down into the sump is only five feet and he can clearly see the wrench stuck in the sludge below. He asks for slack on the retrieval line, climbs down into the sump, bends down to grab his wrench and is nearly immediately rendered unconscious due to an undetected atmospheric hazard. 

The attendant/rescuer sees that the entrant’s head and shoulders do not reappear and within several seconds calls to ask if he is ok, only to hear no answer. He calls several more times, but still no answer. He begins to haul with the retrieval system, which consists of a wire rope winch mounted to a tripod.  The cable becomes tight and the tripod shudders and shifts slightly, then all progress stops. The would-be rescuer tries with all his might to pull the entrant’s limp body up and over the 90-degree concrete edge, but cannot. 

In a panic, the attendant/rescuer climbs down into the space and over to the sump where he sees the entrant pulled tightly against the wall of the sump but not off the floor. He climbs down into the sump to attempt to lift the entrant’s 200-pound limp body up and over the five-foot wall. As soon as he bends down to cradle him, the hazardous atmosphere overcomes him also. Two fatalities later, we wonder how our non-entry rescue retrieval system could have failed us. It would not have, had human nature not interfered and caused two people to make bad decisions. 

That story was intended to point out that things do not always go according to plan. Not only do we humans make bad decisions on occasion, but we also have accidents due to trips, slips, and falls that may send us to an area that the retrieval system may not work. Conditions inside the space may change in such a manner that it affects the retrieval system. 

For all these reasons I implore you to evaluate the capability of the retrieval system to work not only when things go according to plan, but also to evaluate the system based on the “what ifs.” For the “what ifs” that involve bad decisions, that is a matter of training and communicating to the entry team why they cannot deviate from the work plan, even to fetch that dropped wrench. For the “what ifs” that include trips, slips, falls, or equipment failures, it may be time to consider a back-up plan, which may include an entry rescue capability. 


Pat Furr
Pat Furr

Pat Furr is a chief instructor, technical consultant, VPP Coordinator and Corporate Safety Officer for Roco Rescue, Inc. As a chief instructor, he teaches a wide variety of technical rescue classes including Fall Protection, Rope Access, Tower Work/Rescue and Suspended Worker Rescue. In his role as technical consultant, he is involved in research and development, writing articles, and presenting at national conferences. He is also a member of the NFPA 1006 Technical Rescue Personnel Professional Qualifications Standard. Prior to joining Roco in 2000, he served 20 years in the US Air Force as a Pararescueman (PJ).

read more

Alex Reckendorf Named as Roco's General Manager

Thursday, May 02, 2019

Alex Reckendorf Named as Roco's General ManagerAs General Manager for Roco Rescue, Alex’s primary role can be described as that of a visionary, where he collaborates with owner and President Kay Goodwyn to develop the company’s vision – and perhaps also as an air traffic controller, where he works to ensure that other company leadership receives the support and resources needed to put that vision into action.

During his six years with the Air Force, Alex served as a Pararescueman (PJ), where he took courses with Roco Rescue. In was in these courses, that he discovered a passion for teaching technical rescue. He worked part time with Roco’s Tactical Mobile Training Unit until he later received a full-time job offer. He has been with Roco full-time since 2010.

Alex splits his time outside the office between Maine and Florida, where he enjoys being outdoors with his wife and two young sons.

"Yes, this is for me."

This is how Alex Reckendorf responded when a friend pointed him toward technical rescue as a career – a calling that he has found deeply fulfilling since 2002.

From an early age, Alex was service-minded. He enlisted in the United States Air Force immediately after finishing high school, and his six years of active duty included multiple deployments with the Pararescuemen (PJs). Alex notes that many still picture PJs performing traditional rescues by “hopping off a helicopter and picking someone up,” but that simple mission profile has become a highly skilled discipline, leading him to a long career in tactical rescue instruction.

Alex was first introduced to Roco Rescue in 2006 when he attended a training class in Montana – a three-day tactical course on deep mineshaft rescue – to hone his skills as a PJ. Just over one year later, he enrolled in Roco Rescue’s two-week tactical course, which he describes as “bread and butter” skills training for Pararescuemen: confined space rescue, high angle training, rope access, urban climbing, structural collapse rescue, and vehicle extrication.

Upon returning from his last deployment with the PJs, Alex got out of the Air Force and charted a path towards becoming a firefighter. He changed his plans, however, when a phone call to a former instructor and mentor at Roco Rescue turned into a job offer.

A Passion for Training and Teaching

Throughout his career with Roco Rescue, Alex’s role has evolved. He started as an assistant tactical instructor and until recently still occasionally served as a lead instructor for Roco’s various tactical training programs, including confined space training, structural collapse rescue, rope rescue training, climbing, high-angle/mountain rescue training, and other forms of technical rescue. Throughout the years, his work has entailed setting up highline traverse systems over gorges, rappelling down sky-high cargo containers on vessels, and guiding students through exercises in World War II warships to practice confined space rescue tactics. He particularly loves working with experienced Pararescuemen, in part because, “…we learn, too. They have excellent questions…Then we get into problem-solving, and that’s where I have the most fun.”

In recent years, Alex has spent most of his time on a variety of managerial duties. He handled proposals and pricing, managed large government contracts, and was deeply involved in both the finance and human resources functions of the company. While most of these are considered back-office activities, Alex knows from his days as a PJ that success often depends on the planning and administrative work that happens behind the scenes almost as much as the efforts of those on the front lines.

And as his managerial responsibilities have grown, Alex’s love for teaching rescue has grown to include other ways that Roco serves rescuers…and those they protect. “Whether we’re training a rescue team or providing one of our own standby teams for a client facility, our commitment to emergency responders at all levels ultimately, including our own rescuers, makes sure that people return safely to their families each night. From the welder at a plant to the infantryman in the Middle East, Roco exists to bring them home safe.”

Rescue as Prevention

Alex summarizes Roco Rescue’s mission in one word: Safety. “We do that through the education of the rescuers,” he says. “Keeping them safe, and helping them keep the people they’re looking after safe.”

When asked what differentiates Roco Rescue from other technical rescue companies he says, simply, “our people.”

“We’ve got some really unique, experienced people. All of that gets distilled into our training.” While there are other technical rescue companies, Alex believes people continue to come to Roco Rescue because “we are better at keeping people safe. We don’t just fill a square. We make rescuers better at what they do.”

Speaking specifically about Roco Rescue’s Contracted Safety and Rescue Teams (CSRT), Alex says, “We really don’t do many rescues, and that’s the point -- because we work to prevent them.”

And it’s no secret that Roco Rescue does this extremely well. In his experience teaching tactical training courses, Reckendorf has witnessed incredible success stories. When a PJ team that was training on the U.S.S. Alabama happened to witness a ship worker fall and injure himself, the Roco Rescue students were able to lower the man from the ship’s platform and call for medical help. You can read about that rescue here. And when Roco Rescue-trained PJs deployed to Haiti after the devastating earthquakes a few years ago, a responding FEMA team wrote letters lauding their skill and dedication.

Alex’s Vision for Roco Rescue

Alex anticipates tremendous growth for Roco Rescue’s industrial rescue programs in the coming years, particularly given the continued focus on assembling strong teams for contracted safety/rescue work, as well as mobile training teams. Providing the highest caliber training for military and municipal teams across the country will also remain an area of focus. “We’re constantly updating our course content,” he says, “tweaking our equipment kits and modifying our techniques to be safer and more efficient.”

Alex also hopes to call greater attention to Roco Rescue’s refresher courses. “We get great reviews,” he says, but he emphasizes how important it is for course alumni to return every few years to refresh their training and refine their rescue skills. This is particularly important in a culture where many people don’t understand that rescue skills are perishable – they are “use it or lose it” skills that need to be reviewed and practiced. Alex stresses that this is not a matter of checking a compliance box, but rather, it is about prevention, safety, and ultimately, preserving lives.

More Than a Job

Alex resides in both sunny Florida and snowy Maine, where he enjoys spending time with his wife and two young sons. Beyond that, he deeply enjoys his work with Roco Rescue.

“This is not just a job, for any of us. It’s a whole lot more than that,” he says. “I think our clients know this. We care, from the owner right down to the individual instructor and rescuer.”

Alex recognizes that what it comes down to is, simply, “we are the people we serve.” Many Roco Rescue instructors and rescue crew members are still active firefighters, PJs, or other military reservists, and so they know well and understand the importance of what they are doing. This makes the work they do close to home, relatable, tangible, and critical.

Because of this, Alex says, their work “is, and always will be, near and dear to our hearts.”

read more

Cindy Sharrer Named as Roco's Chief Financial Officer

Thursday, May 02, 2019
 
Cindy Sharrer Named as Roco's Chief Financial OfficerAs CFO for Roco Rescue, Cindy oversees all corporate finance and accounting-related activities. This includes leading the team that processes all the financial transactions, from purchase orders and paychecks to customer invoices. Cindy ensures that the books are in order and that the company has adequate liquidity. She provides reporting and guidance on financial matters that ensures the overall health and vitality of the organization.

Cindy also provides the vision, develops the design, and implements the plan for the company’s information systems, drawing on her experience in a past life as an IT consultant and systems integrator. She is particularly passionate about automation and driving efficiencies, helping to eliminate mundane tasks which allows the staff to focus on the more specific needs of Roco’s customers.

Prior to joining Roco Rescue in 2001, she worked as an IT consultant helping a variety of businesses manage the complexities of their operations with IT solutions. Roco was one of her customers in this role. She has also worked for a bank and an oil & gas company, where in both cases she helped them streamline their business processes, navigate periods of transformation, implement new solutions, and install tools to manage the synthesis of technology.

Born in New Orleans, Cindy moved to Baton Rouge as a child and has made the city her home. Her family is her greatest blessing and she enjoys spending all her free time with her loved ones. She is married and has three daughters. Her oldest daughter owns a dance studio and her two younger daughters are active in competitive cheerleading. Cindy spends much of her spare time away from work travelling to competitions and recitals to cheer them on. In her even less spare time, she enjoys sewing, working out and is active in her church.
read more

Confined Space Types - Are All Your Bases Covered?

Friday, November 30, 2018

Confined Space Types - Are All Your Bases Covered?Refineries, plants and manufacturing facilities have a wide range of permit-required confined spaces – some having only a few, while others may have hundreds. Some of these spaces may be relatively open and straightforward while others are congested and complex, or at height. With this in mind, are all your bases covered? Can your rescue team (or service) safely and effectively perform a rescue from these varying types of spaces? Or, are you left exposed? And, how can you be sure?

Rescue Practice & Preplanning

With a large number of permit spaces on site, it would be impossible for a rescue team to practice in each and every one. Plus, in most cases, the spaces are operating, functioning units within the plant. Because of this, section (k) of 1910.146 allows practice from “representative” spaces. This is where the Roco Confined Space Types Chart can make the process easier.

Using OSHA guidelines for determining representative spaces, the Roco Types Chart is designed to assist employers and rescue teams plan for various types of permit spaces.
The chart allows you to categorize permit spaces into six (6) confined space types, which can then be used to prepare rescue plans, determine rescue requirements, conduct practice drills or evaluate a prospective rescue service.
 
First of all, it's important to note that employers are required by 1910.146 and 1926 Subpart AA to allow rescue teams the opportunity to practice and plan for the various types of confined spaces they may be required to respond. This is critical for the success of the rescue, particularly timeliness, as well as for the safety of the rescuers.

Classifying and Typing Your Spaces
So, get out your clipboard, tape measure, some sketch paper, and a flashlight (if safe to do so) in order to view as much of the interior of the space as you can. And, if you absolutely need to enter for typing and/or rescue preplanning purposes, be sure to do so using full permitting procedures. Gaining access to architectural or engineering drawings may also be helpful in determining the internal configuration when actual entry is not feasible. Armed with this information, it is time to “type” the spaces in your response area using the Roco Confined Space Types Chart.

Confined Space Types - Are All Your Bases Covered?Over the decades, we’ve seen just about every type of confined space configuration out there. And, while there may be hundreds of permit spaces on site, most of them will fit into one of these six types and require the same (or similar) rescue plan. Of course, there are always unique situations in addition to physical characteristics, such as space-specific hazards or specialized PPE requirements, but this chart can be a valuable tool in the planning and preparation for confined space rescue operations.

We’ve also learned that it is imperative to understand the physical limitations of space access and internal configuration as well as how this affects equipment and technique choices for the rescue team. Referring to the Roco Types Chart and practicing simulated rescues from the relevant types of spaces will help identify these limitations in a controlled setting instead of during the heat of an emergency.

We can all agree that during an emergency is NOT the time to learn that your backboard or litter will not fit through the portal once the patient is packaged.
Six General Types
On the Roco Types Chart, you will note that there are six (6) general types identified, which are based on portal opening size and position of portal. Types 1 and 2 are “side” entries; Types 3 and 4 are “top” entries; and Types 5 and 6 are “bottom” entries. There are two types of each based on portal size, which is significant for rescue purposes. Openings greater than 24-inches will allow packaged patients on rigid litters or rescuers using SCBA to negotiate the opening; whereas, openings 24-inches or less will not.

Portals less than 24-inches will require a higher level of expertise and different packaging and patient movement techniques.
Once the various types have been determined, pay particular attention to spaces identified as Types 1, 3, or 5. Again, these spaces have the most restrictive portals (24-inches or less) and are considered “worst case” regarding entry and escape in terms of portal size. This is very important because it will greatly influence the patient packaging equipment and rescuer PPE that can be used in the space.

Accessibility and Internal Configuration
In addition to the “type” of the space based on portal size and location, another key consideration is accessibility or “elevation” of the portal. While the rescue service may practice rescues from Top, Side and Bottom portals – being at ground level is very different from a portal that’s at 100-ft. Here’s where high angle or elevated rescue techniques are normally required for getting the patient lowered safely to ground level.

Lastly, the internal configuration of a space must be carefully considered for rescue purposes. This will be discussed more in the following section on Appendix F.

Remember, rescue practice from a representative space needs to be a “true” representation of the kind of rescue that may be required in an emergency.
1910.146 Appendix F – Representative Spaces
In Appendix F, OSHA offers guidelines for determining Representative Spaces for Rescue Practice. OSHA adds that “teams may practice in representative spaces that are ‘worst case’ or most restrictive with respect to internal configuration, elevation, and portal size.” These characteristics, according to OSHA, should be considered when deciding whether a space is truly representative of an actual permit space.

(1) Internal Configuration 
Confined Space Types - Are All Your Bases Covered?What’s inside the space? If the interior is congested with utilities or other structural components that may hinder movement or the ability to efficiently package a patient, it must be addressed in training. For example, will the use of entrant rescuer retrieval lines be feasible? After one or two 90-degree turns around corners or around structural members, the ability to provide external retrieval of the entrant rescuer is probably forfeited. For vertical rescue, if there are offset platforms or passageways, there may be a need for directional pulleys or intermediate haul systems that are operated inside the space.

What about rescues while on emergency breathing air? If the internal configuration is so congested that the time required to complete patient packaging exceeds the duration of a backpack SCBA, then the team should consider using SAR. Will the internal configuration hinder or prevent visual monitoring and communications with the entrant rescuers? If so, it may be advisable to use an additional authorized rescuer as an “internal hole watch” to provide a communication link between the rescuers and personnel outside the space.

What if the internal configuration is such that complete patient packaging is not possible inside the space? This may dictate a “load-and-go” type rescue that provides minimal patient packaging while providing as much stabilization as feasible through the use of extrication-type short spine boards as an example.

(2) Elevation
If the portal is 4 feet or greater above grade, the rescue team must be capable of providing an effective and safe high angle lower of the victim; and, if needed, an attendant rescuer. This may require additional training and equipment. For these situations, it is important to identify high-point anchors that may be suitable for use, or plan for portable high-point anchors, such as a “man lift” or some other device.

(3) Portal Size
Confined Space Types - Are All Your Bases Covered?Here again, the magic number is 24 inches or less for round portals or in the smallest dimension for non-round portals. It is a common mistake for a rescue team to “test drive” their 22-to-23-inch wide litter or backboard on a 24-inch portal without a victim loaded and discover that it barely fits. However, the problem arises when a victim is loaded onto the litter. The only way the litter or backboard will fit is at the “equator” of the round portal. This will most likely not leave enough room between the rigid litter or backboard and the victim’s chest, except for our more petite victims.

For rescuers, it is already difficult to negotiate a portal while wearing a backpack SCBA. For portals of 24 inches or less, it’s nearly impossible. If the backpack SCBA will not fit, it is time to consider an airline respirator and emergency escape harness/bottle instead. Warning: Do NOT under any circumstances remove your backpack SCBA in order gain access to a confined space through a restricted portal or passageway. It is just too easy for a mask to become displaced.

(4) Space Access – Horizontal vs. Vertical
Most rescuers regard horizontal retrievals as easier than vertical. However, this is not always the case. If there are floor projections, pipe work or other utilities, even just a grated floor surface, it may create an incredible amount of friction or an absolute impediment to the horizontal movement of an inert victim. In this case, the entrant rescuers may have to rely on old-fashioned arm and leg strength to maneuver the victim.

Putting the Roco Types Chart into Practice
The Roco CS Types Chart can assist by first providing a way to classify and type your different kinds of spaces. This information can then be used to design training/practice drills as well as annual performance evaluations to make sure your rescue service is capable of rescue from the varying representative spaces onsite. Of course, this applies whether you use an in-house rescue team, a contracted rescue service, or a local off-site response team. Otherwise, how do you know if you truly have your bases covered? Don’t take that chance. If an incident occurs and the rescue personnel you are depending on are not capable of safely performing a rescue, your company could be culpable.

In section (k), OSHA requires employers to evaluate the prospective rescue service to determine proficiency in terms of rescue-related tasks and proper equipment.
If you need assistance with confined space typing or rescue preplan preparation, please contact us at info@rocorescue.com or 800-647-7626.

read more

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!