<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Roco Rescue

Roco Rescue
RescueTalk™ provides leading news and information for safety and rescue professionals and is a service of Roco Rescue, Inc., who specializes in confined space rope rescue training and rescue products for first responders in industrial rescue, municipal rescue and military rescue.
Find me on:

Recent Posts

Q&A: Energy Absorber Systems and Safety Lines

Friday, September 28, 2018

Q&A: Energy Absorber Systems and Safety LinesREADER QUESTION: 
Is an energy absorber system needed on the safety line to help limit the impact forces should the belay system be engaged to arrest the falling load?

ROCO TECH PANEL ANSWER: 

Thank you for your question. Roco uses traditional untensioned safety lines in most all of our rescue systems, and we do indeed incorporate an energy absorber (shock) in those belay systems. While OSHA does not address specifics when it comes to rescue systems, there is some overlap from the OSHA as well as the ANSI standards that is helpful when considering the belay system during rescue. 

NFPA 1006 Standard for Technical Rescue Personnel Professional Qualifications, sections 5.2.9 through 5.2.11, provides guidance for the construction of a belay (safety line) system. Specifically, the 5.2.11 objective statement calls for the belay system to ensure “the fall is arrested in a manner that minimizes the force transmitted to the load.” The annex information to 5.2.9 adds: “A.5.2.9 Belay systems are a component of single-tensioned rope systems that apply a tensioned main system on which the entire load is suspended and a non-tensioned system with minimal slack (belay) designed, constructed, and operated to arrest a falling load in the event of a main system malfunction or failure. 

While these traditional systems used for lowering and raising are in common use, two-tensioned rope systems can also be used to suspend the load  while maintaining near equal tension on each rope, theoretically reducing the fall distance and shock force in the event of a singular rope failure. To be effective, two-tensioned rope systems must utilize devices that will compensate appropriately for the immediate transfer of additional force associated with such failures.”

Additionally the NFPA 1006 definition of belay is “3.3.9* Belay. The method by which a potential fall distance is controlled to minimize damage to equipment and/or injury to a live load.” And Annex information “A.3.3.9 Belay. This method can be accomplished by a second line in a raise or lowering system or by managing a single line with a friction device in fixed-rope ascent or descent. Belays also protect personnel exposed to the risk  of falling who are not otherwise attached to the rope rescue system."

So, where can OSHA help in all of this? OSHA requires the maximum force of a fall arrest system not to exceed 1,800 pounds. ANSI is more protective and requires arresting forces not to exceed 900 pounds. NFPA does not state what the arresting forces need to be limited to, but the performance measurement is to “minimize damage to equipment and/or injury to a live load.” OSHA and ANSI have already done the homework on this and stated their performance requirements. One proven way to meet NFPA 1006 as well as OSHA and ANSI requirements is to incorporate an energy absorber in the belay (fall arrest) system. Whether 1,800 pounds or the ANSI required 900 pounds is appropriate, or if you use a two tensioned system, this is up to your AHJ. 

Fatal Trench Collapse Results in Severe Violator Status

Tuesday, September 25, 2018

An Ohio excavating company faces $202,201 in penalties and was placed in OSHA’s Severe Violator Enforcement Program1 after an employee suffered fatal injuries in a trench collapse. 

Inspectors found that the company was working in trenches up to 16-feet deep without adequate cave-in protection. The company failed to: use protective systems to prevent a cave-in; remove accumulating water; properly use ladders to enter and exit the trench; prevent employees from working beneath a suspended trench box; ensure employees wore hard hats; and make provisions for prompt medical attention in the event of injury.

“A trench can collapse in seconds, burying workers under the weight of thousands of pounds of soil,” said Ken Montgomery, OSHA Cincinnati Area Office Director. “This tragedy was preventable, and could have been avoided if the employer had installed required protective systems to prevent a trench cave-in.”

Here's a video showing multiple violations like the ones described here.

1OSHA's Severe Violator Enforcement Program (SVEP) concentrates resources on inspecting employers who have demonstrated indifference to their OSH Act obligations by committing willful, repeated, or failure-to-abate violations. Enforcement actions for severe violator cases include mandatory follow-up inspections, increased company/corporate awareness of OSHA enforcement, corporate-wide agreements, where appropriate, enhanced settlement provisions, and federal court enforcement under Section 11(b) of the OSH Act. In addition, this Instruction provides for nationwide referral procedures, which includes OSHA's State Plan States. This instruction replaces OSHA's Enhanced Enforcement Program (EEP).

Inspection Process for Roco Training Ropes

Tuesday, August 28, 2018

Inspection Process for Roco Training RopesQuestion: We recently had a student ask how our training rope is monitored for wear and tear because of its extensive use...

Answer: Good question, and it’s a big job for us, no doubt. We’ve used and inspected a lot of rope in the past 35+ years, but this aspect of life safety can never be overlooked or taken lightly. As always, we urge everyone to carefully follow the care, use and inspection guidelines provided by their rope manufacturer. For added safety and as standard practice, we also use secondary back-up ropes and hardware in all field activities. 

Because we train thousands of students per year, we must accept the fact that there are numerous opportunities for our ropes to be exposed to wear such as being stepped on or exposed to dirt and gravel. It is for these reasons that we perform rigorous inspection of the ropes before and after use. Plus, we also conduct an annual competent person equipment inspection as recommended by NFPA.
 
As added safety, we also expect our students to do their part in monitoring the equipment during a class, and that’s why we’re glad you brought this up.
We teach and enforce rope care and inspection of all equipment, including ropes, in all of our classes. Inspections are accomplished at multiple times during any given class including during inventory. Additionally, all equipment is inspected by a Roco employee at the conclusion of each class. If there are any signs of damage or degradation that would render the rope unserviceable according to the manufacturer’s instructions for use, that rope will be taken out of service.

Of course, we’ve seen some rope damaged over the years, which is to be expected with the use our rope receives. However, to my knowledge, we’ve never had a rope failure. We’ve seen cut sheaths and sheath slippage, evidence of broken core fibers, and other damage that failed the rope inspection. But, not once, have we had a rope fail while it was being used to support a life load. The construction and the minimum breaking strength requirements of life safety rope provide a very substantial margin of safety. And, there again, we also have the redundancy of a back-up system in place.

All manufacturers of life safety rope are required by NFPA 1983 (2017 edition) to provide the following inspection criteria information in their instructions for use:

(1) Rope has not been visually damaged.
(2) Rope has not been exposed to heat, direct flame impingement, or abrasion.
(3) Rope has not been subjected to impact load.
(4) Rope has not been exposed to liquids, solids, gasses, mists, or vapors of any chemical or other material than can deteriorate rope.
(5) Rope passes inspection when inspected by a qualified person following the manufacturer’s inspection procedures both before and after each use.

The following inspection tips are provided by PMI Life Safety Rope:
Inspection Process for Roco Training Ropes

HOW TO INSPECT YOUR ROPE

LOOK AT IT.... ALL OF IT!
Start at one end and look at every inch of the rope. Watch for signs that might indicate possible damage such as discoloration, chemical odors, abrasion, cuts or nicks in the outer sheath and visible differences in the diameter of the rope in one area in relation to the rest of the rope.

WRAP IT IN SMALL LOOPS AND LOOK!
Wrap the rope around your hand to form small loops at different random points along the ropes length. Look at these small loops as you make them, the consistency of the loop should be uniform throughout. If it’s not, you might have a problem with the rope’s core.

FEEL THE ROPE!
While you are looking at every inch of the rope, run it through your bare hands and feel it for changes that might indicate damage to the core. Changes may include any inconsistencies in rope diameter, soft or “mushy” spots, or extraordinarily stiff areas.

WRITE IT ALL DOWN!
Write the results of your inspection on the Rope Log included with your rope. Be sure to include anything you found in your inspection that might be or become a concern and document other important information about the rope such as an occurrence of uncontrolled or excessive loading, rope older than 10 years, contact with harmful chemicals, and history of use.

IF IN DOUBT, THROW IT OUT!
If you are not sure about the integrity of a rope........DON’T USE IT!
Consult the manufacturer if you need help.

So, thank you again for asking about the rope used continuously in our training programs. Even with our many years of experience, we do not take rope safety margins as a license to misuse our ropes. And that is why we are diligent in caring for and inspecting all of our equipment including the ropes. 

Rescue Toolbox: Portable Anchors

Thursday, August 9, 2018

PJs use a tripod to extract a patient from a confined space.Portable Anchors – Bipods, Tripods, Gin Poles, and Quads

As rope rescue technicians, we learn early to look for that perfect high-point anchor. You know the one. It’s easy to sling, positioned perfectly in line with the portal and the rescue system, and rated for the anticipated load. We all know that they can be elusive, to say the least.

In locating high-point anchors, we learn to first look straight up for an anchor strong enough and high enough to allow us to clear a vertical litter out of a space (requires about 9 feet). Then we look left and right. Are there beams or substantial anchors high enough and positioned to allow a high-point bridle for our lift? Or maybe there’s an anchor positioned were we may be able to “cowboy” a rope up and over a beam and adjust our end-of-line knot at the appropriate height; and then tie it back to another anchor (extended anchor technique).

But what about those times where we need a high-point anchor, and there is nothing, nada, zilch? No beams, trees, nothing! That’s when we bring our own high-point, also called a portable anchor. 

Portable anchors come in a variety of configurations, the most common being tripods. Even tripods are not all created the same. Some are rated only for equipment, others have different allowable working loads, and they come in a variety of heights.

There is also the option for bipods, quadpods, monopods (gin poles) and some devices that can transform into all of these configurations. They can be centered over a portal for straight, vertical lifts (tripods/quadpods), straddle the plumb line (bipods), or provide a single high-point in an area with a small foot print (monopods). They can even be designed to cantilever out over an edge to provide a clear path for the ropes and ultimately the rescue package. Determining which one to use would be based on your team’s needs and your type of response area.

So, let’s talk about some of the portable anchors that we like to use, including their capabilities and limitations.

Tripods

Rescue Toolbox: Portable Anchors

The SKED-EVAC® Tripod is a simple tubular aluminum tripod with cast header and feet. It extends to a maximum height of 10 feet at the anchor connection points, which gives a good bit of clearance for vertical litters to clear the bottom edge. At full extension (10 feet), the tripod is proof loaded to 5,280 pounds. The SKED tripod is simple to set up, includes a chain to run through the feet to keep the load stresses off the cast header, includes three anchor points, and adjusts in height for situations where there isn’t enough headroom for full extension.

Eccentric Loading and Resultant Forces

Tripods as well as other portable anchors must be respected when it comes to the “direction of pull” on the rescue system and the relationship to the position of the load. Here are a few terms to be familiar with:

Axial loading: The object is loaded in line with the normal fixed axis point (the center of a tripod, equal force on all legs).
Eccentric loading: The load is no longer axial and is offset from the axis point. (The system puts side-load forces on the anchor, or the load is moved out from under the axis point.)
Resultant: This is the relationship between forces acting on an object. (It is the relationship between the load and the vectoring forces of the rescue system from the portable high-point; it is the bisection of this angle.)

The “rule of thumb” for tripods is the resultant forces must remain inside the footprint of the tripod. That is, if the rescue load is pulling straight down (plumb/axial), and the rescue system vectoring forces are angled outside of the footprint of the tripod, then where does the bisection of that angle fall?

Imagine drawing a circle that connects the legs of the tripod. As long as the load and the rescue system remain inside that circle, the resultant will be acceptable, and the tripod will remain axially loaded and not tip over.

There are some techniques to overcome this limitation such as a directional pulley located within the footprint of the tripod. Another technique, which we call the “Pass Through” method (see illustration at bottom), allows counter acting resultant forces to stabilize the tripod. If your haul line is angled too far outside the footprint of the tripod, or the load is moved outside the tripod footprint, the entire tripod is at risk of toppling over (eccentric loading), which could spell disaster.

So, to keep things simple, we often recommend that all lines are kept within the footprint or to add a low directional within the footprint. This provides a small margin for error when hauling or setting up a directional. Technically, you can set up the directional outside the footprint (or pull the haul line outside the footprint) as long as the resultant force is still inside. 

Just remember to envision all lines as though they were loaded before you load the system. We’ve seen plenty of low directionals that were set up perfectly; however, the anchor strap actually allowed them to fall outside the footprint once loaded. As we like to say, "keep it safe and simple!"(KISS) And to play it safe, keep all lines within the footprint.

Multi-Use Portable Anchors

Portable anchors have progressed way beyond the tried-and-true tripods. We are seeing some pretty versatile systems that can be configured as quadpods, bipods, even monopods. These modern systems provide capabilities that go beyond straight vertical lifts while straddling the hole or entry into the rescue subject’s location.

Rescue Toolbox: Portable Anchors

As with most devices that provide additional or alternate capabilities such as monopods and bipods, they are generally more complex and require additional training to fully understand the forces being applied. The ability to extend an anchor point out over the edge of a containment berm, or a cliff edge in a wilderness rescue, will greatly reduce friction on haul lines and reduce rope abrasion, providing clear movement of the rescue package coming up or going down over the edge. This is something that a tripod just cannot provide. But a better mastery of the effects and relationships of the forces being applied needs to be obtained. Understanding and identifying the resultant force is critical in these situations.

These new generation multi-purpose devices, such as the TerrAdaptor™ or the Arizona Vortex, are designed to be used as tripods, bipods, monopods; or in the case of the TerrAdaptor, as a quadpod. They are third party (UL) certified to NFPA 1983 in symmetric tripod and quad-pod configurations. In addition to the straight vertical capabilities, these devices also provide an “over-the-edge” capability. 

For tight areas such as on catwalks, the A-Frame configuration or bipod can provide that portable high-point where a tripod just can’t fit. For extremely tight quarters or when lightweight gear is needed, they can be rigged as a monopod or gin pole. This requires some advanced knowledge of rigging and tiebacks; but, rigged correctly, it provides high strength and a high-point in places no other system would fit.

Sometimes the configuration of the structure or the height of your portable anchor does not allow enough overhead to clear the foot-end of a vertical litter. In instances like this, you may need a simple mechanical advantage assist that is attached low on the litter, or a modified Pick & Pivot technique where the lifting point on the litter is changed from the head to the feet once the litter reaches an edge to allow recovery.

Rescue Toolbox: Portable Anchors

Smaller, Lighter, Stronger

To meet the demands of the USAF Pararescuemen (PJs), Roco worked with Skedco to develop the Roco Tactical Mini-Tripod. 

Reaching about 5 feet at maximum extension with removable legs, it is small enough to carry in the team’s rucksacks, if needed. Its short height also makes it the strongest rescue tripod on the market. Additionally, the removable legs provide the ability to use it as a bipod or A-frame.

Utilizing some simple techniques, a vertical litter patient can be removed from a space with the Roco Mini-Tripod just as easily as with a full-size.

The lighter weight, compact size, and full functionality allow teams with limited manpower and resources to operate without limited capabilities. (Note: in 2023, the Roco Mini Tripod was updated and replaced by Roco's Lowrider™ Compact Rescue Tripod.)

Conclusion

It is important to know what your needs are regarding portable high-point anchors. Complete your rescue preplans. And, if they reveal the need to cantilever out over an edge, or that a bi- or monopod may be required, you may want to consider a multi-functional, portable high-point system that provides capabilities beyond a tripod. Whichever device you choose, always make sure you get the proper training. The unexpected loss of a high-point during training or a rescue could be disastrous. So, be safe, know your equipment and know how to use it.

Check out our selection of tripods in our Gear Shop; or, if you need additional training, review our listing of courses. If you would like to speak with one of our instructors, please call us at 800-647-7626 or email info@RocoRescue.com

Here are several tripod techniques from our new Roco Pocket Guide:

Simple B&T M/A with bottom directional.

Rescue Toolbox: Portable Anchors 

High-point pulley & bottom directional used with piggyback or Z-rig M/A systems.

Rescue Toolbox: Portable Anchors 

 

 

 

 

 

 

 

 

 


Pass-through technique used with piggyback or Z-rig M/A systems.

Rescue Toolbox: Portable Anchors
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Firefighter Deaths Lower in 2017

Tuesday, August 7, 2018

Firefighter Deaths Lower in 2017

Deaths among career and volunteer firefighters continued to be low in 2017 with both at the second lowest level since 1977, when the NFPA study began. There were 60 on-duty firefighter fatalities across the nation in 2017. Of these deaths, 21 were career firefighters and 32 were volunteers. The seven remaining deaths were employees or contractors of federal land management agencies. Sudden cardiac death accounted for the largest share of fatalities with 29 deaths. 

There were 17 deaths at fire scenes (9 structure fires and 8 wildland fires). NFPA also reported that an unusually high number of firefighters (10) were struck and killed by vehicles. Two firefighters were killed and another injured by a drunk driver at the scene of downed power lines.

For more detailed information, visit NFPA.org.

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!