<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Non-Entry Confined Space Rescue…Are You Sure?

Tuesday, May 7, 2019

There are three generally accepted types of confined space rescue: self-rescue, non-entry retrieval, and entry rescue. Just as with the hierarchy of hazard mitigation, confined space rescue should be approached with an ascending hierarchy in mind. 

  1. Self-rescue is typically the fastest type and eliminates or at least greatly reduces the chance that anyone else will be put at risk. For these reasons, it is the first choice, but it is unrealistic to think that an entrant would be able to rescue themselves in all situations.
  2. Non-entry retrieval is the next choice. OSHA stipulates that non-entry retrieval must be considered as a means of rescue – more on that shortly.
  3. Entry rescue is the last choice, largely because it exposes the rescuers to the same hazards that the original entrant faced.

Non-Entry Confined Space Rescue…Are You Sure?

OSHA recognizes the inherent danger of entry rescue, which is why the organization mandates “retrieval systems or methods shall be used whenever an authorized entrant enters a permit space.” However, OSHA goes on to qualify this statement with two very important exceptions. OSHA requires non-entry retrieval, “unless the retrieval equipment would increase the overall risk of entry or would not contribute to the rescue of the entrant.”  Let’s examine each of these two provisions more closely... 

  1. Non-entry retrieval is required “…unless the retrieval equipment would increase the overall risk of entry.” For example, if the retrieval line would create an entanglement hazard that would impede the entrant’s ability to exit the space, then the retrieval system should not be used and entry rescue should be the choice.
  2. And non-entry retrieval is required unless the equipment “…would not contribute to the rescue of the entrant.” The key here is that the non-entry method employed must be viable. It must work when called into action.

For non-entry retrieval systems, we are relying on that retrieval line to exert forces on the entrant to pull them out of the space without help from any other device or human intervention within the space. It must perform without someone inside the space maneuvering the victim or otherwise providing assistance to the retrieval system. It has to work independently of any other forces other than what is generated from outside the space. This extremely important point is often overlooked and has resulted in many fatalities. Sadly, many of those fatalities were the would-be rescuers that attempted entry rescue when the retrieval system failed to do its intended job.

Situations that may render the retrieval system useless would be any configuration or obstruction inside the space that would prevent the system from pulling the victim clear of the space in an unimpeded manner. This could be pipework or obstructions on the floor for a horizontal movement. Likewise, pulling an unconscious victim around corners may render a retrieval system ineffective. If the entrant moves over any edge and down into a lower area offset from an overhead portal even at moderate angles, the retrieval system will probably not be able to pull an inert victim up and over that edge, even if the drop were only a foot or so.

It must be clearly understood that retrieval systems may quite possibly be applying forces on a limp human body, which, as harsh as this sounds, becomes a sort of anchor. It requires a very thorough and honest evaluation of where the entrant will be moving in the space in order to perform their planned work, and what obstructions or structural configurations are in that path. If there is any possibility that the system will not be able to pull an unconscious, inert victim along that path, then the retrieval system is NOT viable.

Human Nature vs The Best Laid Plans - An Example

Okay, so you have done a thorough and honest evaluation of the space, its configuration, and internal obstructions and determined that there is a clear path from the entrant’s “planned” work area, which is offset ten feet from the overhead portal eight feet above. Clearly, the retrieval system will be able to pull the victim out of the space should the need arise. Enter human nature, and with that comes bad decisions. Murphy’s Law has a very nasty way of changing things for the worse. 

What if, in the course of the planned work, our entrant drops his wrench down into a sump immediately adjacent to his work zone but further from the overhead portal? The fixed ladder down into the sump is only five feet and he can clearly see the wrench stuck in the sludge below. He asks for slack on the retrieval line, climbs down into the sump, bends down to grab his wrench and is nearly immediately rendered unconscious due to an undetected atmospheric hazard. 

The attendant/rescuer sees that the entrant’s head and shoulders do not reappear and within several seconds calls to ask if he is ok, only to hear no answer. He calls several more times, but still no answer. He begins to haul with the retrieval system, which consists of a wire rope winch mounted to a tripod.  The cable becomes tight and the tripod shudders and shifts slightly, then all progress stops. The would-be rescuer tries with all his might to pull the entrant’s limp body up and over the 90-degree concrete edge, but cannot. 

In a panic, the attendant/rescuer climbs down into the space and over to the sump where he sees the entrant pulled tightly against the wall of the sump but not off the floor. He climbs down into the sump to attempt to lift the entrant’s 200-pound limp body up and over the five-foot wall. As soon as he bends down to cradle him, the hazardous atmosphere overcomes him also. Two fatalities later, we wonder how our non-entry rescue retrieval system could have failed us. It would not have, had human nature not interfered and caused two people to make bad decisions. 

That story was intended to point out that things do not always go according to plan. Not only do we humans make bad decisions on occasion, but we also have accidents due to trips, slips, and falls that may send us to an area that the retrieval system may not work. Conditions inside the space may change in such a manner that it affects the retrieval system. 

For all these reasons I implore you to evaluate the capability of the retrieval system to work not only when things go according to plan, but also to evaluate the system based on the “what ifs.” For the “what ifs” that involve bad decisions, that is a matter of training and communicating to the entry team why they cannot deviate from the work plan, even to fetch that dropped wrench. For the “what ifs” that include trips, slips, falls, or equipment failures, it may be time to consider a back-up plan, which may include an entry rescue capability.

Cindy Sharrer Named as Roco's Chief Financial Officer

Thursday, May 2, 2019
 
Cindy Sharrer Named as Roco's Chief Financial OfficerAs CFO for Roco Rescue, Cindy oversees all corporate finance and accounting-related activities. This includes leading the team that processes all the financial transactions, from purchase orders and paychecks to customer invoices. Cindy ensures that the books are in order and that the company has adequate liquidity. She provides reporting and guidance on financial matters that ensures the overall health and vitality of the organization.

Cindy also provides the vision, develops the design, and implements the plan for the company’s information systems, drawing on her experience in a past life as an IT consultant and systems integrator. She is particularly passionate about automation and driving efficiencies, helping to eliminate mundane tasks which allows the staff to focus on the more specific needs of Roco’s customers.

Prior to joining Roco Rescue in 2001, she worked as an IT consultant helping a variety of businesses manage the complexities of their operations with IT solutions. Roco was one of her customers in this role. She has also worked for a bank and an oil & gas company, where in both cases she helped them streamline their business processes, navigate periods of transformation, implement new solutions, and install tools to manage the synthesis of technology.

Born in New Orleans, Cindy moved to Baton Rouge as a child and has made the city her home. Her family is her greatest blessing and she enjoys spending all her free time with her loved ones. She is married and has three daughters. Her oldest daughter owns a dance studio and her two younger daughters are active in competitive cheerleading. Cindy spends much of her spare time away from work travelling to competitions and recitals to cheer them on. In her even less spare time, she enjoys sewing, working out and is active in her church.

Confined Space Types - Are All Your Bases Covered?

Friday, November 30, 2018

Confined Space Types - Are All Your Bases Covered?Refineries, plants and manufacturing facilities have a wide range of permit-required confined spaces – some having only a few, while others may have hundreds. Some of these spaces may be relatively open and straightforward while others are congested and complex, or at height. With this in mind, are all your bases covered? Can your rescue team (or service) safely and effectively perform a rescue from these varying types of spaces? Or, are you left exposed? And, how can you be sure?

Rescue Practice & Preplanning

With a large number of permit spaces on site, it would be impossible for a rescue team to practice in each and every one. Plus, in most cases, the spaces are operating, functioning units within the plant. Because of this, section (k) of 1910.146 allows practice from “representative” spaces. This is where the Roco Confined Space Types Chart can make the process easier.

Using OSHA guidelines for determining representative spaces, the Roco Types Chart is designed to assist employers and rescue teams plan for various types of permit spaces.

The chart allows you to categorize permit spaces into six (6) confined space types, which can then be used to prepare rescue plans, determine rescue requirements, conduct practice drills or evaluate a prospective rescue service.

First of all, it's important to note that employers are required by 1910.146 and 1926 Subpart AA to allow rescue teams the opportunity to practice and plan for the various types of confined spaces they may be required to respond. This is critical for the success of the rescue, particularly timeliness, as well as for the safety of the rescuers.

Classifying and Typing Your Spaces

So, get out your clipboard, tape measure, some sketch paper, and a flashlight (if safe to do so) in order to view as much of the interior of the space as you can. And, if you absolutely need to enter for typing and/or rescue preplanning purposes, be sure to do so using full permitting procedures. Gaining access to architectural or engineering drawings may also be helpful in determining the internal configuration when actual entry is not feasible. Armed with this information, it is time to “type” the spaces in your response area using the Roco Confined Space Types Chart.

Confined Space Types - Are All Your Bases Covered?

Over the decades, we’ve seen just about every type of confined space configuration out there. And, while there may be hundreds of permit spaces on site, most of them will fit into one of these six types and require the same (or similar) rescue plan. Of course, there are always unique situations in addition to physical characteristics, such as space-specific hazards or specialized PPE requirements, but this chart can be a valuable tool in the planning and preparation for confined space rescue operations.

We’ve also learned that it is imperative to understand the physical limitations of space access and internal configuration as well as how this affects equipment and technique choices for the rescue team. Referring to the Roco Types Chart and practicing simulated rescues from the relevant types of spaces will help identify these limitations in a controlled setting instead of during the heat of an emergency.

We can all agree that during an emergency is NOT the time to learn that your backboard or litter will not fit through the portal once the patient is packaged.

Six General Types

On the Roco Types Chart, you will note that there are six (6) general types identified, which are based on portal opening size and position of portal. Types 1 and 2 are “side” entries; Types 3 and 4 are “top” entries; and Types 5 and 6 are “bottom” entries. There are two types of each based on portal size, which is significant for rescue purposes. Openings greater than 24-inches will allow packaged patients on rigid litters or rescuers using SCBA to negotiate the opening; whereas, openings 24-inches or less will not.

Portals less than 24-inches will require a higher level of expertise and different packaging and patient movement techniques.

Once the various types have been determined, pay particular attention to spaces identified as Types 1, 3, or 5. Again, these spaces have the most restrictive portals (24-inches or less) and are considered “worst case” regarding entry and escape in terms of portal size. This is very important because it will greatly influence the patient packaging equipment and rescuer PPE that can be used in the space.

Accessibility and Internal Configuration

In addition to the “type” of the space based on portal size and location, another key consideration is accessibility or “elevation” of the portal. While the rescue service may practice rescues from Top, Side and Bottom portals – being at ground level is very different from a portal that’s at 100-ft. Here’s where high angle or elevated rescue techniques are normally required for getting the patient lowered safely to ground level.

Lastly, the internal configuration of a space must be carefully considered for rescue purposes. This will be discussed more in the following section on Appendix F.

Remember, rescue practice from a representative space needs to be a “true” representation of the kind of rescue that may be required in an emergency.

1910.146 Appendix F – Representative Spaces

In Appendix F, OSHA offers guidelines for determining Representative Spaces for Rescue Practice. OSHA adds that “teams may practice in representative spaces that are ‘worst case’ or most restrictive with respect to internal configuration, elevation, and portal size.” These characteristics, according to OSHA, should be considered when deciding whether a space is truly representative of an actual permit space.

(1) Internal Configuration

Confined Space Types - Are All Your Bases Covered?

What’s inside the space? If the interior is congested with utilities or other structural components that may hinder movement or the ability to efficiently package a patient, it must be addressed in training. For example, will the use of entrant rescuer retrieval lines be feasible? After one or two 90-degree turns around corners or around structural members, the ability to provide external retrieval of the entrant rescuer is probably forfeited. For vertical rescue, if there are offset platforms or passageways, there may be a need for directional pulleys or intermediate haul systems that are operated inside the space.

What about rescues while on emergency breathing air? If the internal configuration is so congested that the time required to complete patient packaging exceeds the duration of a backpack SCBA, then the team should consider using SAR. Will the internal configuration hinder or prevent visual monitoring and communications with the entrant rescuers? If so, it may be advisable to use an additional authorized rescuer as an “internal hole watch” to provide a communication link between the rescuers and personnel outside the space.

What if the internal configuration is such that complete patient packaging is not possible inside the space? This may dictate a “load-and-go” type rescue that provides minimal patient packaging while providing as much stabilization as feasible through the use of extrication-type short spine boards as an example.

(2) Elevation

If the portal is 4 feet or greater above grade, the rescue team must be capable of providing an effective and safe high angle lower of the victim; and, if needed, an attendant rescuer. This may require additional training and equipment. For these situations, it is important to identify high-point anchors that may be suitable for use, or plan for portable high-point anchors, such as a “man lift” or some other device.

(3) Portal Size

Confined Space Types - Are All Your Bases Covered?

Here again, the magic number is 24 inches or less for round portals or in the smallest dimension for non-round portals. It is a common mistake for a rescue team to “test drive” their 22-to-23-inch wide litter or backboard on a 24-inch portal without a victim loaded and discover that it barely fits. However, the problem arises when a victim is loaded onto the litter. The only way the litter or backboard will fit is at the “equator” of the round portal. This will most likely not leave enough room between the rigid litter or backboard and the victim’s chest, except for our more petite victims.

For rescuers, it is already difficult to negotiate a portal while wearing a backpack SCBA. For portals of 24 inches or less, it’s nearly impossible. If the backpack SCBA will not fit, it is time to consider an airline respirator and emergency escape harness/bottle instead. Warning: Do NOT under any circumstances remove your backpack SCBA in order gain access to a confined space through a restricted portal or passageway. It is just too easy for a mask to become displaced.

(4) Space Access – Horizontal vs. Vertical

Most rescuers regard horizontal retrievals as easier than vertical. However, this is not always the case. If there are floor projections, pipe work or other utilities, even just a grated floor surface, it may create an incredible amount of friction or an absolute impediment to the horizontal movement of an inert victim. In this case, the entrant rescuers may have to rely on old-fashioned arm and leg strength to maneuver the victim.

Putting the Roco Types Chart into Practice

The Roco CS Types Chart can assist by first providing a way to classify and type your different kinds of spaces. This information can then be used to design training/practice drills as well as annual performance evaluations to make sure your rescue service is capable of rescue from the varying representative spaces onsite. Of course, this applies whether you use an in-house rescue team, a contracted rescue service, or a local off-site response team. Otherwise, how do you know if you truly have your bases covered? Don’t take that chance. If an incident occurs and the rescue personnel you are depending on are not capable of safely performing a rescue, your company could be culpable.

In section (k), OSHA requires employers to evaluate the prospective rescue service to determine proficiency in terms of rescue-related tasks and proper equipment.

If you need assistance with confined space typing or rescue preplan preparation, please contact us at info@rocorescue.com or 800-647-7626.

Request your Confined Space Types Chart & Compliance Guide.

Successful Engulfment Rescue in Iowa

Monday, November 26, 2018

Successful Engulfment Rescue in IowaOur congratulations to the Burlington (Iowa) Fire Department on a successful grain bin rescue that happened in their community back in May of this year (2018). The incident was reported on Firehouse.com.

The Burlington Fire Department responded to an incident with a man trapped up to his neck inside a corn grain bin in a rural area. Upon arriving at the scene, the initial ambulance unit spoke with the victim’s son who told them that his father was buried up to his armpits inside the bin. The son had thrown a rope down to his father to prevent slipping further down into the corn. Fortunately, the victim remained calm and was able to communicate with the responders.

The bin, designed to hold up to 30,000 bushels of corn, was two thirds full on that morning.
Responders used a Res-Q-Throw Disc typically used in water rescue to lower an O2 bag with an attached non-rebreather mask to the victim.
 
As additional response vehicles arrived on scene, proper positioning of the apparatus was critical in assisting the rescue. The department’s aerial truck was positioned in a narrow lane between two grain bins and a barn where the aerial was deployed by the crew. The aerial was initially raised to the roof level where crews (two firefighters and two deputies) had assembled including the victim’s son.
To reduce weight on the roof of the structure, one of the deputies and the son came down from the structure.
Crews soon realized that the only way to rescue the gentleman was to set up a rope system and lower a responder into the bin. The aerial was put in place to assist this operation. An incident command vehicle was set up a short distance behind the aerial, offering excellent visibility to the Incident Commander.
 
Rescue equipment was gathered from various apparatus to include main and secondary life safety ropes as well as other needed gear. Pulleys were attached to the manufactured anchor points on the bottom of the aerial platform. A change-of-direction pulley was fixed to the front of the aerial truck directing the pulling action of the rope to a large grassy area in front of the truck. The main line was rigged with a 5:1 system while the secondary line was rigged with a 2:1 system. CMC MPDs were used as the descent-control device for both lines. On-scene personnel reportedly highly praised these devices.
 
A firefighter donned a Class III-harness to be lowered through a small opening in the top of the bin to the surface level of the corn, which was approximately 25 feet below. The aerial platform was positioned above the opening and remaining personnel on the room tended the lines. These personnel also assisted in lowering equipment down to the rescuer via a rope.
 
As part of the equipment being lowered were several milk crates and soda bottom flats, which became an essential part of the operation by distributing the rescuer’s weight on the corn. These crates, positioned in a horse-shoe pattern around the victim, allowed the rescuer to walk across the surface of the corn. A truck belt was lowered into the bin and was positioned around the victim’s chest. It remained attached to the secondary line to prevent the victim from slipping down further into the corn.
 
Finally, a six-paneled grain rescue tube was lowered into the bin panel by panel. Each panel was placed around the victim and then hammed into place with a TMT Rescue tool. The panels were fastened together to form a solid tube. When secured, the tube protected the victim from shifting corn and relieved some of the pressure being exert on him.
Throughout the process, the ground team kept the rescuer on a short leash to prevent him from falling into the grain himself.

A 4-gas atmospheric monitor with an extra-long sampling tube was used to test the air inside the bin to make sure the rescuer and victim were not in an IDLH atmosphere. The meter was monitored continuously throughout the rescue operation by fire personnel who was positioned on an extension ladder on the exterior of the bin near the opening. He also functioned as a safety officer for operations inside the bin and on the roof and relayed communications for the rescuer inside the space.

A neighboring fire department had brought a special grain rescue auger that was lowered into the bin. The rescuer inserted the auger inside the rescue tube and slowly removed the corn from around the victim’s chest. After the tube was secured around the victim, the IC had called for two relief cuts to be made in the bin – one cut near the victim and the other directly opposite it on the other side of the bin, which was used to empty the bin of corn. Crews used K-12 saws to cut a large triangular opening in the bin wall. The second opening was made by forcing open a door in the side of the bin near the victim. These doors, which swung inward, could only be opened after a significant amount of grain spilled from the cut made on the other side of the bin.

Local road crews which had been on site brought a large-end loader and a smaller skid loading to the scene and used them to push large amount of corn away from the openings in the walls, which enabled a continuous flow of corn.

In approximately 2-1/4 hours after crews arrived on scene, the victim was able to walk from the bin. He refused air transport but consented to ground ambulance transport where he was treated for minor injuries.

Again, our congratulations to the Burlington Fire Department as well as all the agencies involved in making this a successful rescue.

Notes:
The department noted several lessons learned which include:

• Grain bin rescue is a high hazard, low frequency event. The department recognized the importance of its training in ropes and rope operations as well as training with specialized rescue equipment.
• It was determined that the roofs of the grain bins hold far less weight than originally surmised.
• The aerial platform was a key factor in the rescue operation. It was used as an anchor point and for staging equipment. Physical limitations and maximum load-bearing capability must be carefully considered and even more especially when ropes are being utilized. Weight and angles of the aerial must be factored into the operation.

Source: www.Firehouse.com

Safe Confined Space Entry - A Team Approach

Wednesday, September 26, 2018

Having been involved in training for 30 years, I have had the opportunity to observe how various organizations in many different fields approach confined space entry and rescue. And, when it comes to training for Entrants, Attendants and Entry Supervisors, the amount of time and content varies greatly.

Roco Rescue CS EntryMost often, training programs treat the three functions as separate, independent roles locked into a hierarchy based on the amount of information to be provided. However, it’s critical to note, if any one of these individuals fails to perform his or her function safely or appropriately, the entire system can fail – resulting in property damage, serious injury or even death in a confined space emergency.

Before I go any further, I have also seen tremendous programs that foster cooperation between the three functions and use more of a confined space “entry team” approach. This helps to ensure that the entry is performed safely and efficiently.

It also allows all parties to see the overall big picture of a safe entry operation.
In this model, all personnel are trained to the same level with each position understanding the other roles as well. This approach serves as “checks and balances” for confirming that:

• The permit program works and is properly followed;
• The permit is accurate for the entry being performed;
• All parties are familiar with the various actions that need to occur; and,
• The team knows what is expected of each other to ensure a SAFE ENTRY!

However, I am often surprised to find that Entrant and Attendant personnel have little information about the entry and the precautions that have been taken. They are relying solely on the Entry Supervisor (or their foreman) to ensure that all safety procedures are in place. If you have a well-tuned permit system and a knowledgeable Entry Supervisor, this may be acceptable, but is it wise? As the quality of the permit program decreases, or the knowledge and experience of the Entry Supervisor is diminished, so is the level of safety.


Roco CS Entry Supervisor & AttendantIn my opinion, depending exclusively on the Entry Supervisor is faulty on a couple of levels. First of all, the amount of blind trust that is required of that one person. From the viewpoint of an Entrant, do they really have your best interest in mind? And, we all know what happens when we “ass-u-me” anything! Plus, it puts the Entry Supervisor out there on their own with no feedback or support for ensuring that all the bases are covered correctly. There are no checks and balances, and no team approach to ensuring safety.

Looking at how 1910.146 describes the duties of Entrant, Attendant and Entry Supervisor tends to indicate that each role requires a diminishing amount of information. However, we believe these roles are interrelated, and that a team approach is far safer and more effective. To illustrate this, we often pose various questions to Entrants and Attendants out in the field. Here is a sample of some of the feedback we get.

We may ask Entrants…Who is going to rescue you if something goes wrong? Has the LOTO been properly checked? At what point do you make an emergency exit from the space? What are the acceptable entry conditions, and have these conditions been met? How often should the space be monitored? Typically, the answer is, “I guess when the alarm goes off, or when somebody tells me to get out!”

When we talk to Attendants about their duties, we often find they only know to “blow a horn” or “call the supervisor” if something happens, or if the alarm on the air monitor goes off. We also ask…What about when the Attendant has an air monitor with a 30 ft. hose, and there is no pump? Or, if you have three workers in a vertical space and the entire rescue plan consists of one Attendant, a tripod and a winch, plus no one in the space is attached to the cable – what happens then?
  
These are very real scenarios. Scary, but true. It often shows a lack of knowledge and cooperation between the three functions involved in an entry. And, that’s not even considering compliance!
We ask, would it not be better to train your confined space entry team to the Entry Supervisor level? Wouldn’t you, as an Entrant, want to know the appropriate testing, procedures and equipment required for the entry and specified on the permit? Would it not make sense to walk down LOTO with the Attendant and Entrant? This would better train these individuals to understand non-atmospheric hazards and controls; potential changes in atmosphere; or, how to employ better air monitoring techniques. All crucial information.

More in-depth training allows the entry team to take personal responsibility for their individual safety as well as that of their fellow team members. It also provides multiple views of the hazards and controls including how it will affect each team member’s role. Having an extra set of eyes is always a good thing – especially when dealing with the hazards of permit spaces. Let’s face it, we’re human and can miss something. Having a better-trained workforce, who is acting as a team, greatly reduces this possibility.

Roco Rescue Remote MonitoringMany times, we find that the role of Attendant is looked upon as simply a mandated position with few responsibilities. They normally receive the least amount of training and information about the entry. However, the Attendant often serves as the “safety eyes and ears” for the Entry Supervisor, who may have multiple entries occurring at the same time. In reality, the Attendant becomes the “safety monitor” once the Entry Supervisor okays the entry and leaves for other duties. So, there’s no doubt, the better the Attendant understands the hazards, controls, testing and rescue procedures – the safer that entry is going to be!

As previously mentioned, training requirements for Entrant, Attendant and Supervisor are all over the board with little guidance as to how much training or how in-depth that training should be. Common sense tells us that it makes better sense to train entry personnel for their jobs while raising expectations of their knowledge base.

OSHA begins to address some base qualifications in the new Confined Spaces in Construction standard (1926 Subpart AA) by requiring that all confined spaces be identified and evaluated by a “competent person.” It also requires the Entry Supervisor to be a “qualified person.” Does the regulation go far enough? We don’t think so, nor do some of the facilities who require formal, in-depth training courses for their Entrant, Attendant and Entry Supervisor personnel.
 
OSHA 1926.32 DEFINITIONS:
• Competent person: “One who is capable of identifying existing and predictable hazards in the surroundings or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them.” 
• Qualified person: “One who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.” 

So, do yourself a favor…go out and interview your Entrants and Attendants on a job.
Find out how much they do (or don’t) understand about the entry and its safety requirements. Do not reprimand them for not knowing, as it may not be their fault. It may be a systemic deficiency and the training mentality of distributing a hierarchy of knowledge based on job assignment.

Simply put, we believe that arming the entry team with additional information results in safer, more effective confined space operations. After all, isn’t that what it’s all about? GO TEAM!

Additional Resources:
• Download our Confined Space Entry Quick Reference Checklist. This checklist reiterates the value of approaching permit-required confined space entries as a team. In addition to OSHA-required duties and responsibilities for the three primary roles, we have included our recommendations as well. These are duties that we feel are important for the individual(s) fulfilling that role to be knowledgeable and prepared to perform if need be.

Safe Entry Workshop: Entrant, Attendant & Entry Supervisor is now available. See the full course description for details.

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!