<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Roco Rescue

Roco Rescue
RescueTalk™ provides leading news and information for safety and rescue professionals and is a service of Roco Rescue, Inc., who specializes in confined space rope rescue training and rescue products for first responders in industrial rescue, municipal rescue and military rescue.
Find me on:

Recent Posts

Rescue Airmen Angle for New Rescue Techniques

Tuesday, February 1, 2011

1/21/2011 - CAPE CANAVERAL AIR FORCE STATION, Fla– by Staff Sgt. Leslie Kraushaar / 920th Rescue Wing Public Affairs

What do you do with an empty, 300-foot tall, metal building that, at one time, was used to build Titan rockets?

Air Force Reserve pararescuemen (PJs) and combat rescue officers (CROs) from the 920th Rescue Wing, Patrick Air Force Base, Fla., found a way to put it to good use which included ropes, pulleys, climbing gear, helmets, gloves, and lots of sweat.

Dressed in air battle uniforms – tactical vests, body armor, radios and ballistic helmets – that added weight and limited mobility, the pararescuers assumed the task of hauling a “survivor” up-and-down the steel platforms, that at one time held a Titan Rocket.

Rescuers, active duty and reserve, are attending a two-week course, Roco Rescue, held here that hones their rescue skills in a not-so-ordinary way.

“We simulate anything – any type of situation that these guys may find their selves in and have a victim to rescue,” said Mr. Ishmael “Ish” Antonio, tactical program manager and instructor for Roco Rescue.

A retired PJ himself, Mr. Antonio travels all over the country with his team of instructors to “refresh” the rope skills of PJs and CROs.

“We don’t tell them how to do their jobs – this is just a refresher for them. These are perishable skills, ones that must be maintained,” said Mr. Antonio.

As the first scenario unfolds, it’s clear the Rescuers have some work ahead of them – this is where it gets sweaty.

Leaving a 220 pound dummy on the concrete floor of the complex, the PJs, CROs and instructors, make the climb up the metal staircases, stopping at about 315 feet or so above the ground.

Then the clock starts – first, one PJ rappels down to the “victim” to package him up for hoisting; second, the other four or five team members make up a rope and pulley system from the gear they have on them; third, the PJs and CROs then start slowly hauling up the PJ and “victim” by heaving on the pulley systems and rope systems they made; fourth, pull the PJ and “victim” to the safety of the steel platform.

As one team finishes this – a team several stories above them, starts to rappel a PJ to pick up where that team left off for the samegoal: to get the “victim” up to the highest point in the massive complex.

“You really learn how to use the tools in your pocket,” said Tech. Sgt. Adrian Durham, reserve pararescueman with the 920th RQW. “Keeping everything as simple as possible is our goal here.”

The ROCO Rescue course specializes in high-altitude, high-angle and confined space rescues. The use of the very tall building works well for them to hoist a PJ and “victim” up very high, severe areas.

This training is required for all PJs and CROs both active duty and reserve.

“We are considered rescue technicians,” said Capt. James Sluder, reserve combat rescue officer with the 920th RQW. “This course and our knowledge of ropes give us the credibility to be able to come in and do the rescue in a timely, safe fashion.”

Using this training comes in handy with deployments always looming in the future and the humanitarian rescues that can happen at any time. In fact, this exact training was put to use during their last deployment in Afghanistan where they had to extract and save over 300 Afghan Nationals from buried vehicles after an avalanche swept away a road last year. “You never know what you’re going to get until you get there,” said Mr. Antonio.

The PJs and CROs are a unique group. Their knowledge of ropes sets them apart from the other Special Forces entities and allows them to perform their duties in technically challenging areas, such as mountains, ravines, rivers and, in some cases, industrial areas, said Mr. Antonio.

“You have to be able to think quickly in these situations,” said Sergeant Durham. “Time is always against you and the best protection from being killed is speed.”

The 920th RQW is an Air Force Reserve Command’s Combat-Search-and-Rescue Unit. There are two geographically separated units, each with their own Guardian Angel Weapons System (CROs, PJs and search, evasion, resistance, escape specialists) at Davis Monthan Air Force Base, Ariz. and Portland International Airport, Ore.

The wing is comprised of 1,500 Airmen who live by the motto… “These things we do, that others may live.” These rescuers are prepared to go anywhere at any time. According to one of the Pararescuemen, “Our mission tasking is on short notice, we go anywhere. In 72 hours, we’ll be wheels up, ready to go anywhere.”

1 Dead, 2 Injured in Storage Tank Incident

Wednesday, January 26, 2011

1 Dead, 2 Injured in Storage Tank IncidentA man died Friday (January 21) after being overcome by fumes while trying to help two co-workers who lost consciousness inside a tank they were cleaning at a pharmaceutical plant north of Atwater Village, authorities said.

When Los Angeles firefighters arrived at the Baxter Healthcare Corp. about 4 a.m., one of the men had no heart rate and was not breathing although paramedics were able to restore his pulse, said Erik Scott of the LAFD.

All three were taken to hospitals, where one of the men died. The other two remain in critical condition.
The men had been cleaning the inside of a 4-foot-tall cylindrical tank with a 5-foot diameter, said the LAFD’s Brian Humphrey. The tank has a 24-inch diameter opening at the top, through which workers enter to clean it. When firefighters arrived, two men were inside and one was partially inside, Humphrey said. Firefighters pulled all three men from the “confined space” and brought them outside, he said.

LAFD Capt. Jaime Moore told the Los Angeles Times that the man who died had called 911 and then went in to help his unconscious colleagues, but was himself overcome by the fumes. The workers were using detergent to clean the container of blood plasma. They were overcome by ethanol, which was used as a separating agent for blood plasma, Moore said.

“We pulled special resources on scene, and they have the technical expertise to perform these operations,” said Moore. “Were it not for the actions they took when they got on scene, all three would be dead,” he added.

According to a company spokesperson, Baxter’s Los Angeles facility “is the world’s largest and most advanced plasma-fractionation facility, and has been in operation for more than 50 years.”

(Story from NBC Los Angeles, the LA Times and KTLA5News)

Atmospheric Monitors: “Calibration vs. Bump Testing”

Friday, January 21, 2011

Atmospheric Monitors: “Calibration vs. Bump Testing”“The fact that we rely on these instruments to detect hazards that may be colorless, odorless, and very often fatal, should be reason enough to motivate us to complete a very strict schedule of instrument calibration/maintenance and pre-use bump testing.”

Here at Roco, we’re often asked for an explanation of the difference between “calibration” and “bump testing” of portable atmospheric monitors. There seems to be some confusion, specifically regarding bump testing. Some folks believe that bump testing and calibration are the same thing. Others think that bump testing is no more than allowing the monitor to run its “auto span function” during the initial startup sequence – or by running a “manual auto span” in order to zero out the display if there is any deviation from the expected values.

To preface this explanation, it is important that the user maintain and operate the monitor in accordance with the manufacturer’s instructions for use. There are some general guidelines that apply to all portable atmospheric monitors and some of the information in this article is drawn from an OSHA Safety and Health Information Bulletin (SHIB) dated 5/4/2004 titled “Verification of Calibration for Direct Reading Portable Gas Monitors.”

Considering that atmospheric hazards account for the majority of confined space fatalities, it is absolutely imperative that the instruments used to detect and quantify the presence of atmospheric hazards be maintained in a reliable and ready state. Environmental factors such as shifts in temperature, humidity, vibration, and rough handling all contribute to inaccurate readings or outright failure of these instruments. Therefore it is critical to perform periodic calibration and pre-use bump testing to ensure the instruments are capable of providing accurate/reliable information to the operator.

Calibration of the monitor involves using a certified calibration gas in accordance with the manufacturer’s instructions. This includes exposing the instrument sensors and allowing the instrument to automatically adjust the readings to coincide with the known concentration of the calibration gas. Or, if necessary, the operator will manually adjust the readings to match the known concentration of the calibration gas.

In addition to using a certified calibration gas appropriate to the sensors being targeted, do not ever use calibration gas that has passed its expiration date. The best practice is to use calibration gas, tubing, flow rate regulators, and adapter hoods provided by the manufacturer of the instrument.

The frequency of calibration should also adhere to the manufacturer’s instructions for use; or, if more frequent, the set protocol of the user’s company or facility. Once the monitor has been calibrated, it is important to maintain a written record of the results including adjustments for calibration drift, excessive maintenance/repairs, or if an instrument is prone to inaccurate readings.

Each day prior to use, the operator should verify the instrument’s accuracy. This can be done by completing a full calibration or running a bump test, also known as a functional test. To perform a bump test, use the same calibration gas and equipment used during the full calibration and expose the instrument to the calibration gas. If the readings displayed are in an acceptable range compared to the concentrations of the calibration gas, then that is verification of instrument accuracy. If the values are not within an acceptable range, then a full calibration must be performed and repairs/replacement completed as necessary.

Modern electro-mechanical direct reading atmospheric monitors have come a long way in recent years in terms of reliability, accuracy, and ease of use. But they are still relatively fragile instruments that need to be handled and maintained with a high degree of care. The fact that we rely on these instruments to detect hazards that may be colorless, odorless, and very often fatal should be reason enough to motivate us to complete a very strict schedule of instrument calibration/maintenance and pre-use bump testing.

For more information on this subject, please refer to the November 20, 2002 ISEA position Statement “Verification of Calibration for Direct Reading Portable Gas Monitors Used In Confined Spaces”; “Are Your Gas Monitors Just expensive Paperweights?” by Joe Sprately, and James MacNeal’s article as it appears in the October 2006 issue of Occupational Safety and Health magazine.

Roco BLOG hits outstanding numbers!

Wednesday, January 19, 2011

In the past 7 months, we’ve had more than 18,000 hits on our Blog! We’d like to thank everyone for reading– and encourage you to ask a question of our Tech Panel. Or, let us know what you want to read more about – Techniques? Equipment? Standards & Regulations?

We’re here to get you the answers and information you need to do your jobs more safely and effectively – so let us know how we can help! You can email your suggestions to techpanel@rocorescue.com. Help us keep the numbers climbing in 2011 and stay in the loop!

Industrial Rescue I/II…Practical Skills, Industrial Focus

Monday, January 3, 2011

Industrial Rescue I/II…Practical Skills, Industrial FocusNew for 2011! Practical skills training with a focus on compliance, but without the certification testing.

We’ve had many requests for a course that provides the skills, techniques and problem-solving scenarios for industrial rescue without the NFPA certification testing. Focusing on OSHA compliance, Roco’s new Industrial Rescue I/II will prepare rescuers and rescue teams for industrial confined space and elevated rescue as well as “rescue from fall protection.” Here’s more…

INDUSTRIAL RESCUE I/II (50 Hours)

This course offers a very practical, hands-on approach to industrial rescue that will provide the skills necessary to meet OSHA compliance guidelines for a competent rescue team or rescue team member.

Participants will be taught safe, simple and proven techniques that will allow them to effectively perform confined space and elevated rescues from towers, tanks, vessels and other industrial structures. Rescues from simulated IDLH atmospheres requiring the use of Supplied Air Respirators and SCBA will also be practiced. This course is designed for all rescuers, both industrial and municipal, who may be required to handle confined space rescues in industrial settings. It also includes Rescue from Fall Protection (rescue of suspended workers) as well as OSHA Authorized Entrant, Attendant and Supervisor training.

The problem-solving scenarios can be used to document annual practice requirements in representative spaces as required by OSHA 1910.146 and as referenced in NFPA 1006. For training conducted at Roco’s training facility, scenarios will be completed in all six (6) types of confined spaces. At other sites, the number of types completed will depend on the availability of practice spaces.

OSHA 1910.146(k)(2)(iv)
Ensure that affected employees practice making permit space rescues at least once every 12 months, by means of simulated rescue operations in which they remove dummies, manikins, or actual persons from the actual permit spaces or from representative permit spaces. Representative permit spaces shall, with respect to opening size, configuration, and accessibility, simulate the types of permit spaces from which rescue is to be performed.

NFPA 1006 A.3.3.38 Confined Space Type
Figure A.3.3.38* shows predefined types of confined spaces normally found in an industrial setting. Classifying spaces by “types” can be used to prepare a rescue training plan to include representative permit spaces for simulated rescue practice as specified by OSHA. (*Roco Confined Space Types Chart)

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!