<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Mental Health Care for Rescue Professionals

Friday, August 4, 2023

Emergency responders are more likely to develop significant mental health problems than the general population. It is estimated that nearly 30% of first responders will develop depression, posttraumatic stress disorder (PTSD), or even suicidal ideations at some point during their lifetime [1]. Unfortunately, a pervasive stigma surrounding mental health prevents many of these dedicated individuals from seeking help when they need it the most. It’s time to break the stigma and normalize providing help for those who dedicate their lives to helping others.  

Rescue workers are exposed to harrowing scenes of devastation, suffering, and loss on a regular basis. Repeated exposure to these critical incidents can impart serious psychological scars throughout the course of even a short-lived career. Some studies suggest that emergency workers are 3 times more likely to develop mental health issues as a result of these exposures [2]. Despite this idea becoming more and more mainstream, emergency workers rarely have an opportunity to process these emotions, and worse, the culture sometimes discourages and chastises this type of vulnerability.  

mental_health2The misguided notion that seeking help is a sign of weakness or an inability to handle the job perpetuates the stigma surrounding mental health in emergency response professions. Consequently, many workers suffer from mental health issues silently, unable to admit they need assistance. This hesitancy to seek help leads to coping with unhealthy habits, placing them at high risk for developing alcohol and substance abuse issues. The reluctance to seek help, combined with these risk factors, can lead to severe and sometimes fatal outcomes.

The importance of mental health support for rescue workers has never been clearer. Just as they are equipped with the physical tools to perform their duties, rescue workers should be provided with adequate mental health resources which are crucial in safeguarding their emotional wellbeing and overall performance. Early intervention is key, and recognizing signs of mental distress, such as changes in behavior, increased irritability, emotional exhaustion, and social withdrawal, can make a significant difference.


It’s time to break the stigma and normalize providing help for those who dedicate their lives to helping others.  


While therapy and counseling are often used as reactive measures, there is a need for proactive programs on the front end. Critical Incident Stress Management (CISM) teams are becoming a staple in emergency response agencies. These individuals proactively combat the mental health endemic by helping clinicians deal with stress at its inception. By fostering a culture where seeing help is encouraged and normalized, we can empower emergency response workers to take care of their mental health without fear of judgment. 

mental_health1As emergency responders, we are an integral part of ensuring the safety and health of those in our workplace and communities. While performing this job requires incredible amounts of dedication, courage, and resilience, we must also remember that we are not invincible. By advocating for the normalization of seeking help, we can better support the emotional well-being of rescue professionals and enable them to perform at their best while facing the challenges of their noble profession.

[1] https://www.samhsa.gov/sites/default/files/dtac/supplementalresearchbulletin-firstresponders-may2018.pdf

[2] https://www.eurekalert.org/news-releases/733519

 

Additional Resources

How Sure Are You That You Don't Need On-Air Rescue Practice?

Friday, July 28, 2023

On-Air Rescue PracticeMany times, we hear teams say they don’t need to practice “on-air” rescue scenarios because their employees are not allowed to work in IDLH or low O2 areas. That always makes us ask, what about the confined spaces that have the potential for atmospheric hazards? What about those spaces that may unexpectedly become IDLH or low O2 – what then?  

It's important to note that OSHA states that a confined space must only have the “potential to contain” a hazardous atmosphere to be considered a permit-required confined space, which requires rescue capabilities.

For these unexpected instances, do you have the appropriate rescue response in place? At Roco, we believe that not training your rescue team to respond to IDLH emergencies is like setting up an expensive home protection system and then not turning it on.

Rescuers need to be prepared for the worst – as well as the unexpected – should an atmospheric hazard develop within a space. This is just one of the reasons that permit spaces can be so deadly.

NIOSH Fatal Facts:

  • A little less than half the deaths from atmospheric conditions occurred in spaces that originally tested as being acceptable for entry. Something happens unexpectedly, and things go very wrong, very quickly.

  • Approximately 60% of all fatalities in confined space incidents where multiple fatalities occurred were “would be” rescuers.

OSHA’s Confined Space Standard Box

As rescuers, we need to be prepared for the worst case scenario as well as the unexpected! This is especially true when it comes to confined spaces. 

 

Roco Courses With On-Air Confined Space Scenarios:

URBAN/INDUSTRIAL RESCUE ESSENTIALS™

URBAN/INDUSTRIAL RESCUE TEAM OPERATIONS™

FAST-TRACK™ CONFINED SPACE AND ROPE TECHNICIAN

• FAST-TRACK™ CONFINED SPACE TECHNICIAN

 

9/11 @ The Pentagon: A Creative Solution to the Structural Collapse Hazard

Tuesday, September 10, 2019

We were at a standstill, and if we couldn’t come up with a solution to shore up that part of the structure,” Tim Robson recalls, “we’d be sending our people into a much riskier situation. In fact, some areas were so dangerous, we had to start thinking about things like, “Who’s not married?” and “Who doesn’t have kids?” It was awful, but it was something we had to think about.”     

911 Never Forget

On September 12, 2001, Tim Robson was sent to the Pentagon with his FEMA Urban Search and Rescue New Mexico Task Force 1 team. Their objectives were to search for survivors, recover victims, structurally stabilize the damaged area of the building, and locate several safes containing classified documents. Because the site was a crime scene, they also had to document and preserve key pieces of information for the FBI 

Tim’s team began their work in the rubble on the edges of the impact zone, but they quickly reached the area where the building hadn’t completely collapsed. It was inside the building where there was the highest probability of finding survivors, but it was also too dangerous to send rescuers into these overhead environments before stabilizing the structure. The building had already suffered pancake and lean-to collapses in the hours after initial impact. Extreme heat from the explosion and burning jet fuel weakened the building’s support columns. This created an extraordinarily hazardous environment for the search and rescue teams.  

“The left side of the impact zone, on the outermost ring of the Pentagon – part of that wall was actually moving,” Tim recalls. “The loads were so great any movement was very hazardous. It was definitely stressful. But we were extremely task-oriented and we wanted to get the job done and get out of there.” 

The textbook approach to stabilizing a heavy building with extensive structural damage like this was to stack 6x6 timbers in a box around each damaged column. “It’s just like stacking Lincoln Logs,” explains Tim. This provides a very strong and stable support structure in case the column fails.  

However, it only works if there’s something substantial overhead for the stacked timbers to support, and in the case of several weakened columns on the outer edge of the building, the ceiling didn’t exist all the way around the columns.  

The team put their heads together to come up with alternative solutions and workarounds, but nobody was very comfortable with any of the ideas floated. Tim knew that the stacked timbers approach derived its strength from the joints at the corners where the timbers overlapped. With that principle in mind, Tim came up with the idea to connect two boxes of stacked timbers together by using longer timbers on one edge of each box and overlapping those longer timbers.  

L Crib Back

“I stacked some pencils together to show what I was thinking,” Tim says, “and the engineers did some quick math and said, ‘Heck yeah, let’s run with this.’ It was not something anyone on the team had ever seen before, but when we all thought about the support it would provide, it just made sense.”    

This improvised solution greatly reduced the risk of the building collapsing while rescuers were inside, and the team was able to get on with their very difficult search and recovery tasks.  

There are several takeaways here. Let’s never forget the courage of our search and rescue team members in the aftermath of September 11th - they willingly ventured into hazardous territory and subjected themselves to the possibility of a follow-on terrorist attack, airborne toxins, and exposure to mass carnage. For this, they have our eternal gratitude and respect.  

L Crib FrontThe learning takeaway for rescuers is to deepen your knowledge. Because no two rescue situations are exactly alike, a rescuer who understands the principles (the “why”) will be much more effective than one who just memorizes procedures (the “how”). In a dynamic situation, the “textbook approach” may not offer a solution, so understanding the key principles allows you to adapt what you know to the specific situation. Creative solutions exist everywhere. This is a great example of how a thorough understanding of the principles spawned a creative solution to a difficult problem.  

After the mission was over, Tim’s creative technique became part of the operational procedures for FEMA’s search and rescue teams going forward. And ultimately, nobody was haunted by the decisions that were made about who to send into the building to do the work. Special thanks to Tim Robson and to everyone who took risks and made sacrifices to help others after September 11.  

L Crib

 

Tim Robson is a chief instructor and the New Mexico CSRT Director for Roco Rescue, Inc. As a chief instructor, he teaches a wide variety of technical rescue classes and has been instrumental in the development of our Trench & Structural Collapse Rescue programs. In his role as a CSRT Director, he leads our on-site rescue and safety services, which includes standby rescue, confined space program management, leading safety meetings and more. Prior to joining Roco in 1996, he served in the U.S. Marine Corps as a Rescue Diver/Swimmer, at the Albuquerque Fire Department, and as a Rescue Squad Officer for FEMA’s New Mexico Task Force 1.

Confined Space Types - Are All Your Bases Covered?

Friday, November 30, 2018

Confined Space Types - Are All Your Bases Covered?Refineries, plants and manufacturing facilities have a wide range of permit-required confined spaces – some having only a few, while others may have hundreds. Some of these spaces may be relatively open and straightforward while others are congested and complex, or at height. With this in mind, are all your bases covered? Can your rescue team (or service) safely and effectively perform a rescue from these varying types of spaces? Or, are you left exposed? And, how can you be sure?

Rescue Practice & Preplanning

With a large number of permit spaces on site, it would be impossible for a rescue team to practice in each and every one. Plus, in most cases, the spaces are operating, functioning units within the plant. Because of this, section (k) of 1910.146 allows practice from “representative” spaces. This is where the Roco Confined Space Types Chart can make the process easier.

Using OSHA guidelines for determining representative spaces, the Roco Types Chart is designed to assist employers and rescue teams plan for various types of permit spaces.

The chart allows you to categorize permit spaces into six (6) confined space types, which can then be used to prepare rescue plans, determine rescue requirements, conduct practice drills or evaluate a prospective rescue service.

First of all, it's important to note that employers are required by 1910.146 and 1926 Subpart AA to allow rescue teams the opportunity to practice and plan for the various types of confined spaces they may be required to respond. This is critical for the success of the rescue, particularly timeliness, as well as for the safety of the rescuers.

Classifying and Typing Your Spaces

So, get out your clipboard, tape measure, some sketch paper, and a flashlight (if safe to do so) in order to view as much of the interior of the space as you can. And, if you absolutely need to enter for typing and/or rescue preplanning purposes, be sure to do so using full permitting procedures. Gaining access to architectural or engineering drawings may also be helpful in determining the internal configuration when actual entry is not feasible. Armed with this information, it is time to “type” the spaces in your response area using the Roco Confined Space Types Chart.

Confined Space Types - Are All Your Bases Covered?

Over the decades, we’ve seen just about every type of confined space configuration out there. And, while there may be hundreds of permit spaces on site, most of them will fit into one of these six types and require the same (or similar) rescue plan. Of course, there are always unique situations in addition to physical characteristics, such as space-specific hazards or specialized PPE requirements, but this chart can be a valuable tool in the planning and preparation for confined space rescue operations.

We’ve also learned that it is imperative to understand the physical limitations of space access and internal configuration as well as how this affects equipment and technique choices for the rescue team. Referring to the Roco Types Chart and practicing simulated rescues from the relevant types of spaces will help identify these limitations in a controlled setting instead of during the heat of an emergency.

We can all agree that during an emergency is NOT the time to learn that your backboard or litter will not fit through the portal once the patient is packaged.

Six General Types

On the Roco Types Chart, you will note that there are six (6) general types identified, which are based on portal opening size and position of portal. Types 1 and 2 are “side” entries; Types 3 and 4 are “top” entries; and Types 5 and 6 are “bottom” entries. There are two types of each based on portal size, which is significant for rescue purposes. Openings greater than 24-inches will allow packaged patients on rigid litters or rescuers using SCBA to negotiate the opening; whereas, openings 24-inches or less will not.

Portals less than 24-inches will require a higher level of expertise and different packaging and patient movement techniques.

Once the various types have been determined, pay particular attention to spaces identified as Types 1, 3, or 5. Again, these spaces have the most restrictive portals (24-inches or less) and are considered “worst case” regarding entry and escape in terms of portal size. This is very important because it will greatly influence the patient packaging equipment and rescuer PPE that can be used in the space.

Accessibility and Internal Configuration

In addition to the “type” of the space based on portal size and location, another key consideration is accessibility or “elevation” of the portal. While the rescue service may practice rescues from Top, Side and Bottom portals – being at ground level is very different from a portal that’s at 100-ft. Here’s where high angle or elevated rescue techniques are normally required for getting the patient lowered safely to ground level.

Lastly, the internal configuration of a space must be carefully considered for rescue purposes. This will be discussed more in the following section on Appendix F.

Remember, rescue practice from a representative space needs to be a “true” representation of the kind of rescue that may be required in an emergency.

1910.146 Appendix F – Representative Spaces

In Appendix F, OSHA offers guidelines for determining Representative Spaces for Rescue Practice. OSHA adds that “teams may practice in representative spaces that are ‘worst case’ or most restrictive with respect to internal configuration, elevation, and portal size.” These characteristics, according to OSHA, should be considered when deciding whether a space is truly representative of an actual permit space.

(1) Internal Configuration

Confined Space Types - Are All Your Bases Covered?

What’s inside the space? If the interior is congested with utilities or other structural components that may hinder movement or the ability to efficiently package a patient, it must be addressed in training. For example, will the use of entrant rescuer retrieval lines be feasible? After one or two 90-degree turns around corners or around structural members, the ability to provide external retrieval of the entrant rescuer is probably forfeited. For vertical rescue, if there are offset platforms or passageways, there may be a need for directional pulleys or intermediate haul systems that are operated inside the space.

What about rescues while on emergency breathing air? If the internal configuration is so congested that the time required to complete patient packaging exceeds the duration of a backpack SCBA, then the team should consider using SAR. Will the internal configuration hinder or prevent visual monitoring and communications with the entrant rescuers? If so, it may be advisable to use an additional authorized rescuer as an “internal hole watch” to provide a communication link between the rescuers and personnel outside the space.

What if the internal configuration is such that complete patient packaging is not possible inside the space? This may dictate a “load-and-go” type rescue that provides minimal patient packaging while providing as much stabilization as feasible through the use of extrication-type short spine boards as an example.

(2) Elevation

If the portal is 4 feet or greater above grade, the rescue team must be capable of providing an effective and safe high angle lower of the victim; and, if needed, an attendant rescuer. This may require additional training and equipment. For these situations, it is important to identify high-point anchors that may be suitable for use, or plan for portable high-point anchors, such as a “man lift” or some other device.

(3) Portal Size

Confined Space Types - Are All Your Bases Covered?

Here again, the magic number is 24 inches or less for round portals or in the smallest dimension for non-round portals. It is a common mistake for a rescue team to “test drive” their 22-to-23-inch wide litter or backboard on a 24-inch portal without a victim loaded and discover that it barely fits. However, the problem arises when a victim is loaded onto the litter. The only way the litter or backboard will fit is at the “equator” of the round portal. This will most likely not leave enough room between the rigid litter or backboard and the victim’s chest, except for our more petite victims.

For rescuers, it is already difficult to negotiate a portal while wearing a backpack SCBA. For portals of 24 inches or less, it’s nearly impossible. If the backpack SCBA will not fit, it is time to consider an airline respirator and emergency escape harness/bottle instead. Warning: Do NOT under any circumstances remove your backpack SCBA in order gain access to a confined space through a restricted portal or passageway. It is just too easy for a mask to become displaced.

(4) Space Access – Horizontal vs. Vertical

Most rescuers regard horizontal retrievals as easier than vertical. However, this is not always the case. If there are floor projections, pipe work or other utilities, even just a grated floor surface, it may create an incredible amount of friction or an absolute impediment to the horizontal movement of an inert victim. In this case, the entrant rescuers may have to rely on old-fashioned arm and leg strength to maneuver the victim.

Putting the Roco Types Chart into Practice

The Roco CS Types Chart can assist by first providing a way to classify and type your different kinds of spaces. This information can then be used to design training/practice drills as well as annual performance evaluations to make sure your rescue service is capable of rescue from the varying representative spaces onsite. Of course, this applies whether you use an in-house rescue team, a contracted rescue service, or a local off-site response team. Otherwise, how do you know if you truly have your bases covered? Don’t take that chance. If an incident occurs and the rescue personnel you are depending on are not capable of safely performing a rescue, your company could be culpable.

In section (k), OSHA requires employers to evaluate the prospective rescue service to determine proficiency in terms of rescue-related tasks and proper equipment.

If you need assistance with confined space typing or rescue preplan preparation, please contact us at info@rocorescue.com or 800-647-7626.

Request your Confined Space Types Chart & Compliance Guide.

Using a Crane in Rescue Operations

Sunday, September 30, 2018
 
Using a Crane in Rescue Operations
We’re often asked, “Can I use a crane as part of my rescue plan?”

If you’re referring to using a crane as part of moving personnel or victims, the answer is “No, except in very rare and unique circumstances.” The justification for using a crane to move personnel, even for the purposes of rescue, is extremely limited. Therefore, it is very important to understand the do’s and don’ts for using a heavy piece of equipment in a rescue operation.

On the practical side, the use of a crane as a “stationary, temporary high-point anchor” can be a tremendous asset to rescuers. It may also be part of a rescue plan for a confined space; for example, a top entry fan plenum. The use of a stationary high-point pulley can allow rescue systems to be operated from the ground. It can also provide the headroom to clear rescuers and packaged patients from the space or an elevated edge.

Using a Crane in Rescue OperationsOf course, the security of the system's attachment to the crane and the ability to “lock-out” any potential movement are a critical part of the planning process. If powered industrial equipment is to be used as a high-point, it must be treated like any other energized equipment with regard to safety. Personnel would need to follow the Control of Hazardous Energy [Lockout/Tagout 1910.147]. The equipment would need to be properly locked out – (i.e., keys removed, power switch disabled, etc.). You would also need to check the manufacturer’s limitations for use to ensure you are not going outside the approved use of the equipment.

Back to using a crane for moving personnel – because of the dangers involved, OSHA severely limits its use. In order to utilize a crane, properly rated “personnel platforms or baskets” must be used. Personnel platforms that are suspended from the load line and used in construction are covered by 29 CFR 1926.1501(g). There is no specific provision in the General Industry standards, so the applicable standard is 1910.180(h)(3)(v).

This provision specifically prohibits hoisting, lowering, swinging, or traveling while anyone is on the load or hook.
OSHA prohibits hoisting personnel by crane or derrick except when no safe alternative is possible. The use of a crane for rescue does not provide an exception to these requirements unless very specific criteria are met. OSHA has determined, however, that when the use of a conventional means of access to any elevated worksite would be impossible or more hazardous, a violation of 1910.180(h)(3)(v) will be treated as “de minimis” if the employer complies with the personnel platform provisions set forth in 1926.1501(g)(3), (4), (5), (6), (7), and (8).

Note: De minimis violations are violations of standards which have no direct or immediate relationship to safety or health. Whenever de minimis conditions are found during an inspection, they are documented in the same way as any other violation, but are not included on the citation.

Therefore, the hoisting of personnel is not permitted unless conventional means of transporting employees is not feasible. Or, unless conventional means present even greater hazards (regardless if the operation is for planned work activities or for rescue). Where conventional means would not be considered safe, personnel hoisting operations meeting the terms of this standard would be authorized.

OSHA stresses that employee safety, not practicality or convenience, must be the basis for the employer's choice of this method.
However, it’s also important to consider that OSHA specifically requires rescue capabilities in certain instances, such as when entering permit-required confined spaces [1910.146]; or when an employer authorizes personnel to use personal fall arrest systems [1910.140(c)(21) and 1926.502(d)(20)]. In other cases, the general duty to protect an employee from workplace hazards would require rescue capabilities.

Consequently, being “unprepared for rescue” would not be considered a legitimate basis to claim that moving a victim by crane was the only feasible or safe means of rescue.

Using a Crane in Rescue OperationsThis is where the employer must complete written rescue plans for permit-required confined spaces and for workers-at-height using personal fall arrest systems – or they must ensure that the designated rescue service has done so. When developing rescue plans, it may be determined that there is no other feasible means to provide rescue without increasing the risk to the rescuer(s) and victim(s) other than using a crane to move the human load. These situations would be very rare and would require very thorough documentation. Such documentation may include written descriptions and photos of the area as part of the justification for using a crane in rescue operations.

Here’s the key… simply relying on using a crane to move rescuers and victims without completing a rescue plan and very clear justification would not be in compliance with OSHA regulations.
It must be demonstrated that the use of a crane was the only feasible means to complete the rescue while not increasing the risk as compared to other means. Even then, there is the potential for an OSHA Compliance Officer to determine that there were indeed other feasible and safer means.

WARNING: Taking it a step further, if some movement of the crane (or fire department aerial ladder, for example) is required, extreme caution must be taken! Advanced rigging techniques may be required to prevent movement of the crane from putting undo stress on the rescue system and its components. Rescuers must also evaluate if the movement would unintentionally “take-in” or “add” slack to the rescue system, which could place the patient in harm’s way. Movement of a crane can take place on multiple planes – left-right, boom up-down, boom in-out and cable up-down. If movement must take place, rescuers must evaluate how it might affect the operation of the rescue system.

Using a Crane in Rescue OperationsOf course, one of the most important considerations in using any type of mechanical device is its strength and ability (or inability) to “feel the load.” If the load becomes hung up on an obstacle while movement is underway, serious injury to the victim or an overpowering of system components can happen almost instantly. No matter how much experience a crane operator has, when dealing with human loads, there is no way he can feel if the load becomes entangled. And, most likely, he will not be able to stop before injury or damage occurs.

Think of it this way, just as rescuers limit the number of haul team members so they can feel the load, that ability is completely lost when energized devices are used to do the work.
For rescuers, a crane is just another tool in the toolbox – one that can serve as temporary, stationary high-point making the rescue operation an easier task. However, using a crane that will require some movement while the rescue load is suspended should be a last resort! There are simply too many potential downfalls in using cranes. This also applies to fire department aerial ladders. Rescuers must consider the manufacturer’s recommendations for use. What does the manufacturer say about hoisting human loads? And, what about the attachment of human loads to different parts of the crane or aerial?

There may be cases in which a crane is the only option. For example, if outside municipal responders have not had the opportunity to complete a rescue plan ahead of time, they will have to do a “real time” size-up once on scene. Due to difficult access, victim condition, and/or available equipment and personnel resources, it may be determined that using a crane to move rescuers and victims is the best course of action.

Using a crane as part of a rescue plan must have rock-solid, written justification as demonstration that it is the safest and most feasible means to provide rescue capability. Planning before the emergency will go a long way in providing options that may provide fewer risks to all involved.

So, to answer the question, “Can I include the use of a crane as part of my written rescue plan?” Well, yes and no. Yes, as a high-point anchor. And, no, the use of any powered load movement will most likely be an OSHA violation without rock-solid justification. The question is, will it be considered a “de minimis" violation if used during a rescue? Most likely it will depend on the specifics of the incident. However, you can be sure that OSHA will be looking for justification as to why using a crane in motion was considered to be the least hazardous choice.

NOTE: Revised 9/2018. Originally published 10/2014.

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!