<img height="1" width="1" src="https://www.facebook.com/tr?id=3990718177617800&amp;ev=PageView &amp;noscript=1">

Why Use a High-Point Dorsal Connection Point?

Friday, July 6, 2018
Why Use a High-Point Dorsal Connection Point?

We recently had a Facebook inquiry about attaching a rappeler's belay line (safety line) to their high-point dorsal connection on their harness. We choose to do this for a number of reasons including: (a) compliance with applicable regulations; (b) adherence to safe and practical rescue procedures; and, (c) the physiological effects of falls – how the body absorbs an impact force. Let’s take a general look at these considerations.

Compliance

OSHA considers our rappel/lower main lines as “work positioning” lines and our belay or safety lines as “fall protection.” The fact that they and we, as rescuers, consider the safety line as fall protection, or more accurately as our Personal Fall Arrest System (PFAS), kicks in a few requirements and considerations for all private sector responders and for municipal responders governed by OSHA-approved State Plans. These responders are required to comply with applicable OSHA regulations.

However, keep in mind, these regulations are designed to protect workers (and rescuers) from harm and injury. During training, since it is not a real rescue, we should be following the applicable regulations and standards for safety as well as liability reasons. Even during actual rescues, it is important to adequately protect our people from injury. The days of “rescue at all costs” are gone. We are responsible for designing training, systems and SOPs/SOGs that protect our people in a rescue situation.

Note the following key points from OSHA 1926.502(d):

• Limiting the free fall distance (max free fall 6 feet)
“…be rigged such that an employee can neither free fall more than 6 feet (1.8 m), nor contact any lower level”

• Deceleration distance of 3.5 feet (41 inches)
“…bring an employee to a complete stop and limit maximum deceleration distance an employee travels to 3.5 feet (1.07 m)”

• Maximum allowable impact load 1,800lbf.
“…limit maximum arresting force on an employee to 1,800 pounds (8 kN) when used with a body harness”

• Improvised anchorage strengths of 5,000lbf or twice the anticipated load.

“Anchorages used for attachment of personal fall arrest equipment shall be…capable of supporting at least 5,000 pounds (22.2 kN) per employee attached…”
“Have sufficient strength to withstand twice the potential impact energy of an employee free falling a distance of 6 feet (1.8 m), or the free fall distance permitted by the system, whichever is less.”

• Harness attachment should be to the high-point dorsal connection point.

“The attachment point of the body harness shall be located in the center of the wearer's back near shoulder level, or above the wearer's head.”

You may have heard the statement, “Firefighters/rescuers don't need fall protection or need to follow OSHA.” This is not true for the 27 State Plan states where OSHA regulations do apply to public sector employees including emergency responders. It puts the burden on the employer, agency or department to establish fall protection and rescue protocols that would adequately protect their people.

To illustrate this, here is an excerpt from an article written by Stephen Speer, a NY career firefighter, for “Fire Rescue” magazine which deals with potential OSHA violations during rescue operations and training exercises. (Note: New York is a State-Plan state.)

“I spoke to a New York State Public Employee Safety & Health (PESH) supervisor about the following scenario and asked if there were areas that could be potential violations.

Scenario: A firefighter operating from a roof ladder is cutting a ventilation hole on a pitched roof. The firefighter falls from the roof and is injured.

In what areas, if any, could an incident commander or company officer be cited? In response, I received 12 pages of documentation. The documents showed that in evaluating potential violations of the general duty clause to see if anyone is responsible, the following four elements must be met:

1. The employer failed to keep the workplace free from a hazard to which employees of that employer were exposed.
2. The hazard was recognized.
3. The hazard was causing or likely to cause death or serious physical harm.
4. There was a reasonable and adequate method to correct the hazard.
 

NFPA 1500, chapter 8.5.1.1, states that operations should be limited to those that can be completed safely. In this scenario, there is the potential for citation if all four elements apply. As the above scenario illustrates, whether or not you have an aerial apparatus, you must consider fall arrest protection.”

Practicality

When rescuers are sent into a vertical confined space, we use the safety line (PFAS) to protect them as they are being lowered and raised from the space. It is also used as “an immediate means of retrieval” should something go wrong inside the space. Having the safety/retrieval line attachment point at the high-point dorsal position allows us to attempt an emergency retrieval with the victim being extracted in a low profile to fit through a narrow portal.

Physiological Effects

There have been numerous studies on the effects on the body when subject to a fall and arrest while in a harness. They generally come to the same conclusion that high-point dorsal attachment is the most survivable and provides for the greatest injury reduction. Here are excerpts from two studies.

1) Excerpt from a study conducted by Dr. M. Amphoux entitled, “Exposure of Human Body in Falling Accidents,” which he presented at the International Fall Protection Seminar in 1983:

In experiments on the position of the attachment point on the harnesses, Amphoux found that a high attachment point was preferable because “it gave a better-disposed suspension” and that it was “especially effective when the attachment is on the back. When the falling stops, the neck flexes forward. If the attachment point is in the front of the sternum, the neck flexes backwards and the lanyard may strike the face.”

Amphoux continued that it would be better for the compression to be localized on the body of vertebrae and not on the posterior joints, which were too fragile. “Therefore,” he said, “the attachment point would be better on the back than pre-sternal and should be high enough to reduce the potential neck injury. In addition, the forward flexion would be stopped by the thrust of the chin on the chest.”

This was why Amphoux and his colleagues strictly recommended attachment high on the back. It also protected the face from the lanyard when falling. In the case of falling head first, regaining a feet-first position would involve flexion of the head, whereas if the attachment were pre-sternal, the head would more often be projected backwards [whiplash effect].

However, it was accepted that a front attachment might be preferred in a few working situations. This was only acceptable when the height of the potential fall was very short. Whatever the choice of body support, it should not be forgotten that it was only a compromise and not a guarantee of absolute security.

2) Excerpt from “Survivable Impact Forces on Human Body Constrained by Full Body Harness,” HSL/2003/09 by Harry Crawford:

The one-size-fits-all policy of some harness manufacturers may not be suitable for the range of body weight 50kg to 140kg. Although it may be possible for those in the wide range of body weight/size to don such a harness, the position of the harness/lanyard attachment is of paramount importance. For best performance and least risk of injury, the attachment should be as high as possible between the shoulder blades.

Note: They also concluded that the shorter the fall, the less impact and less chance of injury no matter which type of harness or where the connection point was.

Conclusion

Like any rescue or work safety technique, you need to look at all the variables and decide which technique and equipment will best protect you or your co-workers. We choose the high-point back connection because of the variety of situations and locations we might face during a rescue based on the three considerations mentioned earlier in this article.

Thanks for a great question and taking the time to look into the reasons why systems or techniques are used. I hope this answers your question. If you have additional questions, please contact me at 800-647-7626.

By Dennis O'Connell, Roco Director of Training

PFAS Worked... Now It's Time for Rescue

Monday, June 4, 2018

PFAS Worked... Now It's Time for RescueDoes your company authorize employees to work at height using personal fall arrest systems (PFAS)?

If so, you need to keep reading. Even if your employees don't use personal fall arrest systems, but they work at height using passive restraint, active restraint, or work-positioning systems, you need to keep on reading.

If you have demonstrated that there is no feasible means to utilize employee protection on the "Hierarchy of Fall Protection" other than fall arrest, meaning there is no way to bring the work to the ground or to use a fall restraint, then you have accepted that at some point, your employee will fall.

The personal fall arrest system (PFAS) is there to arrest their fall before they hit the ground or other hard parts, and to minimize injury during that fall and arrest event. OSHA requires employers who authorize personal fall protection systems to provide "prompt rescue," and a big reason for this is OSHA now recognizes suspension trauma as a hazard. Reference: 1910.140(c)(21) "The employer must provide for prompt rescue of each employee in the event of a fall," OSHA Safety and Health Information Bulletin (SHIB 03-24-2004, updated 2011) regarding Suspension Trauma.

Even though this is not specifically required by OSHA, wouldn't it make sense to have a prompt rescue capability for times when an employee is injured or becomes suddenly ill while working at height?

This could be an employee who is protected by passive restraint but not PFAS. For instance, if an employee needs to climb a vertical fixed ladder to access a platform with perimeter guardrails 20 feet above the next lower level and is incapacitated due to injury or illness, how will you get that employee to the ground for treatment and transport? Most likely it will require a technical rope rescue effort or some other means of getting them from height and safely to the ground.

Having Suspended Worker Rescue Preplans already in place goes a long way in preparing for the emergency of a fallen suspended worker or a worker that is injured or becomes ill but is isolated by height. By completing these preplans, it should become apparent when the requirements for viable rescue go beyond what I call the "Fred Flintstone" rescue (i.e., "so easy a caveman can do it!"). PFAS Worked... Now It's Time for Rescue

Additionally, there are products that will delay the onset of suspension trauma should a worker fall and remain suspended in their PFAS. These can significantly improve survivability after fall arrest while awaiting rescue.

Assisted, non-technical rescue can be accomplished using ladders, man lifts, or many other primitive but effective means. However, there comes a point where the situation will require some degree of technical rescue capability. If you have done an honest and knowledgeable assessment of the rescue needs for your facility for all the known or potential areas where you may have employees working at height, you very likely will have found the need for a technical rescue requirement.

If you are lucky, and your facility is located in a municipality that has emergency responders with a rope rescue capability that is willing and able to respond to your location, then you still must ensure that they can perform what needs to be done.

A really good way to do this is to have them come to your facility for the purposes of preplanning and hopefully demonstrating their abilities. Simply posting "911" as the plan, and calling it good, is not even close.

Some facilities have in-house teams that are equipped and trained to perform technical rescue. These in-house teams are generally the fastest to respond and it usually eliminates the problem of relying on a municipal rescue team that may be called out on a separate emergency.

For companies that do not have a municipal agency that can and will respond or does not have the technical ability to perform the types of rescues that may be required, there is always the option of training host employees to perform these types of rescue.

The first option is a single day of training using pre-engineered rescue systems or what we like to call "plug and play" systems. The second option is a two-day "build as you go" class that provides solutions in rescue environments that the pre-engineered systems are unable to cover.

Roco's one-day Pre-Engineered Rescue Systems training relies on manufactured rescue systems that require no knot tying, or the need to create mechanical advantages, or to load friction control devices. These systems are so straight forward that most students will be able to operate them safely and proficiently even if they haven't performed refresher training for several months. With these systems, you literally take the system out of a bag, hang it up to a suitable anchor, and you are ready to rescue.

Roco teaches a variety of techniques that are suitable for a conscious, uninjured suspended victim and also for an unconscious or injured victim who would need to be connected to the rescue system remotely by the use of a telescopic "gotcha pole." As straightforward and easy as this system is to become proficient with, it does have its limitations. For example, in order for this type of system to be employed, the rescuer(s) must be able to safely get into a position above or slightly offset, and within about 10 feet from the victim. If that is not possible, then it is time to prepare for a technical suspended worker rescue.

Roco's two-day Rescue From Fall Protection class teaches a limited variety of knots, including tied full-body harnesses, mechanical advantage systems, anchoring, friction control, lowering, rappelling, hauling, and line transfer systems. These skills are not that hard to master, but they are perishable and require sufficient practice at regular intervals in order to maintain proficiency. This type of "build as you go" capability allows the rescue team to create a system that will work for just about any situation and structural configuration except for the most extreme settings.

PFAS Worked... Now It's Time for RescueSo, if your facility seems to be behind the curve regarding the rescue of workers from height, you may need to discuss training options - either for the worker that has fallen and remains suspended from their PFAS, or for the one who is injured or ill at height with no way to get down.

Remember, a worker cannot hang suspended for any length of time without the danger of suspension trauma, which can be deadly.

If we can assist you in assessing your fall protection rescue needs, please contact us at info@rocorescue.com, or call our office at 800-647-7626.

Additional Resources

Keeping Pace with Fall Protection

Tuesday, August 8, 2017

Keeping Pace with Fall ProtectionWe all know that initial safety training is a crucial element of our programs that aim to keep our employees protected from harm at work. For any and all hazards (or potential hazards} to which we expose our workers, we must ensure they understand the nature of the hazards and how to protect themselves.

Initial safety training and proper safety equipment, combined with good old-fashioned experience, goes a long way in ensuring a safe work environment. But, at times, we must provide re-training for our employees – and there are many reasons for this.

For example, if our employees demonstrate a lack of knowledge or acceptable performance in regards to any particular hazard, we must provide re-training. If the process or equipment changes, we must provide re-training. If new safety equipment (includes systems as well) is brought into the program, we must re-train our employees on its proper use. And, finally, if there are changes to safety legislation or best-known practices, we need to re-train.

It seems that every week a new piece of fall protection equipment is brought to market – and for the most part, these emerging technologies make work-at-height safer than ever before. Additionally, these newer fall protection items tend to be lighter, more comfortable, easier to operate, and can even perform multiple safety functions. This is all great news, but not every item/system is right for the varied situations encountered at our workplaces. But when we do introduce a new piece of fall protection equipment to our workforce, it nearly universally calls for some degree of re-training. The manufacturer’s instructions for use may be a great starting point to satisfy this training, but it is always a good idea to provide some degree of formal training on the equipment, and then document that training.

The extent of this re-training is dependent on the complexity of the new equipment and the authorized person’s general knowledge base. Sometimes the user manual does not cover all the points that the re-training should convey. For example, harness-mounted self-retracting lifelines are becoming more and more prevalent in the work-at-height environment. In addition to the standard training for pre-use and periodic inspections, proper mounting, operating capabilities and limitations, at least one other point of training seems to be required. The worker cannot walk too quickly away from their anchorage lest they engage the arresting mechanism which abruptly stops the worker in their tracks. This may at times create a new hazard by jerking the worker off balance or causing them to drop objects they may have been carrying. I have even heard some tales of individuals suffering minor injuries due to the sudden stop. So, even though you may not find this point of training in the user’s manual, it comes with experience and should be included in the re-training for this type of new equipment.

Another reason to provide re-training for fall protection has to do with an observed deficiency in an authorized person’s knowledge or performance regarding fall protection. Now this can become a little tricky to find the root cause of the deficiency. Is it truly a lack of knowledge on the authorized person’s part, or is it a disregard for required procedures? Sometimes it's a mix of both. No matter the primary cause of the deficiency, if that authorized person is to remain on that job, it is incumbent on the employer to provide proper re-training. And I will say it again, document that re-training!

Keeping Pace with Fall Protection

We have recently had a significant legislative change to the general industry standard for fall protection. On Nov. 18, 2016, OSHA 1910 Subpart D “Walking-Working Surfaces” was published and became effective on Jan 18, 2017. The major changes to this final rule have to do with physical changes to existing and future structures regarding the phase-in of ladder safety systems, eliminating the outdated general industry requirements for scaffolds and adopting the construction industry’s scaffold standards' guidance on the use of rope descent systems and qualified climbers, as well as some other changes. But the most significant changes that will drive training and re-training requirements is the added flexibility of using personal fall protection systems for authorized persons. These personal fall protection systems include fall restraint, work positioning, and personal fall arrest systems (PFAS). OSHA has eliminated the mandate to use guardrail systems as the primary fall protection method and now allows the general industry employer to determine the fall protection method that they feel is best suited for the nature of the work at height. And this now includes personal fall protection which was not addressed prior.

For general industry employers, who prior to the new Subpart D did not allow their employees to use personal fall protection systems other than in accordance with 1910.66, the option to do so now will be deemed compliant. And, of course, this will require initial training and re-training for the use of personal fall protection equipment and systems. Additionally, employers that introduce the authorized use of work positioning and personal fall arrest systems to their workplace will also have to provide training on rescue of these workers if they are relying on an in-house rescue capability.

In the years I have been involved with safety and rescue training, one subtlety that I observe is this:

Oftentimes an employer or their employees do not realize they have a training deficiency until after they've gone through the training.

This is certainly true when it comes to rescue training. At the conclusion of nearly every rescue class I teach, at least one of the students says they never realized what all was involved in rescue and what the limitations of certain rescue systems were. And this is consistent with my interviews and reviews of rescue programs when I am asked to perform needs assessments at various facilities. Unless you have a background in technical rescue, it is very difficult to visualize the systems, skills, and equipment required to safely access and rescue a fallen/suspended victim.

Both OSHA and ANSI require employers to provide "prompt rescue" of employees they authorize to work at height while using personal fall arrest systems. OSHA has published a Safety and Health Information Bulletin recognizing suspension trauma as a workplace hazard affecting workers that use personal fall arrest systems. Many employers address rescue of fallen/suspended workers in their fall protection programs, but stop at merely developing written policies that may fall well short of the requirements needed at the time of an incident. This falls back to my earlier point that an employer that has a limited background and understanding of the complexities of performing rope rescue, especially if it requires technical skills beyond the simplest rescue, may not understand what the true requirements are for their facility. Sort of like that general saying last year that “We don’t know what we don’t know.” So, training for rescue is a subcategory of fall protection training that does not have as much easily accessed guidance and resources to rely on as a guide.

Quality training will include several of the points that I have detailed so far. The training will be pretty specific to the job with very little time spent on irrelevant material. The training will be of the type that best transfers the information in either a vocational or academic manner. The training will close the gaps that have been identified and arm the employer and the students with a better understanding of what is truly required to perform the job, which is especially true for rescue. But finally, the training should be delivered in such a manner that it captures the students’ interest. The best outcome of training, the classes where the student finishes with the highest level of retention, understanding and performance, are the classes that compel the students to engage in the learning.

I think it is a safe assumption to say that we have all sat through classes wondering when and hoping for the class to end. Looking at our watch is one thing, but when we are tapping it to see if it is even still working is a really bad sign. I am not suggesting that educators have to provide entertainment, but there is a demonstrated positive difference in classes delivered by an engaging trainer as compared to a very dull, monotonous trainer.

In addition to seeking an engaging trainer, it is important for the trainee to take some ownership in the learning process as well. This is where the adult learner has an advantage over younger learners. We as adults generally understand that the training will result in a better understanding of the job requirements and in many cases is a factor in career progression.

I encourage you to seek out the training that your employees need. Or, as an employee yourself, seek out quality, applicable training. Review the course syllabi and determine if it will close those knowledge and skills gaps that you have identified. Always back up those fancy sales brochures by reaching out to others to get their opinion on their experiences with the training in the past. Also, remember to consider re-training as needed and always document. These things are important for the overall quality and credibility of your safety training programs.

Article by Pat Furr, Safety Officer & VPP Coordinator for Roco Rescue, Inc. 

Roco Rescue Training in North Dakota

Monday, January 23, 2017

Roco Rescue Training in North Dakota

Roco is excited to be conducting several Rescue & Fall Protection Workshops at the 44th Annual Safety Conference next month in Bismarck, ND. This will kick off our working relationship with the ND Safety Council to provide safe, effective confined space rescue training for their membership. 

What's more, the North Dakota Safety Council (NDSC) is currently constructing a new safety campus in Bismarck that will house a 5,000 square foot hands-on training lab. Roco, as a training partner, will provide high-level technical rescue courses at this new facility on a year-round basis.

For the conference on February 20-23, we will be conducting a number of hands-on rescue workshops and presentations to be presented by Roco Lead Instructors Dennis O’Connell, Pat Furr, Brad Warr, Eddie Chapa and Josh Hill. Sessions include:

  • Intro to Competent Person Requirements for Fall Protection
    2/20 9am-6pm (classroom w/demo)
  • Confined Space Entrant, Attendant, and Supervisor Requirements
    2/20 9am-6pm (classroom w/demos) 
  • Tripod Operations
    2/21 11am-5pm (hands-on training) 
  • So You’ve Fallen, Now What?
    2/22 10am-11:30am (classroom)
  • Dial 911 for Confined Space Rescue
    2/22 1:30pm-2:30pm (classroom w/demos)
  • Confined Space and Rope Rescue...
    2/22 1:30pm-5pm (hands-on training) 
  • Trench Collapse Rescue Considerations
    2/22 2:45pm-3:45pm (classroom) 
  • Fallen/Suspended Worker Rescue
    2/23 8am-11:15am (classroom w/demos) 
  • We look forward to meeting you at Roco booths (#202 & #203) or in these training sessions. For more info, click to NDSC’s 44th Annual Safety & Health Conference. Don't forget to register online at www.ndsc.org for these training sessions.

Where Do You Fit Best on Your Rescue Team?

Wednesday, September 28, 2016

By Pat Furr, VPP Coordinator & Corporate Safety Officer for Roco Rescue, Inc.

Where Do You Fit Best on Your Rescue Team?

At the start of nearly every rescue class, I'll ask, “Okay, who here is afraid of heights?” Usually a few folks will raise their hands, but the vast majority don’t. I then qualify the same question by saying, “By afraid, I don’t mean that you are so overcome with fear that you cannot function – only that when you are at height you get a little case of the butterflies…” Then a few more hands will go up, but typically still fewer than half the class. I continue by adding that I’m always am a bit concerned for the folks that didn’t raise their hand as it means one of two things. First, it may be they are not being totally honest, but more concerning to me is they truly are not afraid of heights...and this is scary.

Where Do You Fit Best on Your Rescue Team?Human beings are born with an innate fear of heights. This is natural, and quite protective. I’m certainly afraid of heights, and I still get butterflies. It’s just that I’ve learned how to get those butterflies to fly in formation, so I can then function just fine at height. The day I climb atop a wind turbine tower or get that first peek over the edge of some serious exposure, and I don’t get that familiar feeling, that’s my sign to hang up my harness and ride the keyboard full time. This feeling is our not-too-subtle reminder that we do not have wings…and it is a healthy reminder!

There is a point to this, and I’m about to get there. Over the years, I've had some students with a serious case of YMIC (young male immortality complex). They will insist that they are not afraid of heights – or anything else, for that matter. I've found, when it comes time to go over the edge while hanging from that skinny little ½” kernmantle rope, backed up with a ½” safety line, our superheroes tend to freeze like the statue of Michelangelo. They won’t budge, can’t speak, or look any direction but down! Most often, these individuals gradually gain trust in their equipment; in the techniques they’ve learned; and perhaps, most importantly, in themselves. While they may never be "comfortable" going over the edge, they can still be valuable members of their rescue team. Some can be very strong in many other rescue skills such as knot tying, rigging, friction control, mechanical advantage, etc. They can also be excellent in logistics, developing action plans and other key areas.

First, know your weaknesses as well as your strengths. Then, identify your weaknesses and strive to make them your strengths.

A second tenet I live by is to enter a rescue knowing that you will be an asset to the effort. But sometimes, it’s not possible to do this, and having an unusual fear of heights may be one of those times. Avoid crossing the line from being an asset to becoming a liability – creating a situation in which your team would then have to deal with “two” victims. This is huge – especially in an emergency. And that’s what this article is all about. 

Before I go any further, a bit about egos. There is simply no room for egos during a rescue. When the call comes in, it’s about one person and one person only, and that is the victim. We all have our pride, but we need to “park it” until everyone, including the victim and the rescuers, are safe and sound. As trained rescuers, we all have something to contribute. Each of us has a role to fill in the rescue effort and be an asset to the overall effectiveness of our team.

Where Do You Fit Best on Your Rescue Team?So, how do we learn what our best role as a rescuer may be? Here’s one way. Practice as a team in simulated rescues that are scenario driven and mimic the types of rescues that your team may be summoned to perform. It is during these practice sessions that you will discover your strengths and your weaknesses. It is important for ALL team members to honestly critique each other as well as themselves to help determine the best way to fill the different roles on the team.

As your team practices more often, trends will start to surface. One rescuer may be particularly strong at climbing and can rig cleanly and efficiently while hanging from work positioning equipment. Another rescuer may be your “ace in the hole” for rigging anchors. A third may be so good at converting lowering systems to haul systems, that it’s an obvious choice. Then, there may be some that don’t shine at any particular skill, but are reliable haul team members or can run the SAR cart with the best of them.

Where Do You Fit Best on Your Rescue Team?All teams have a spectrum of performers, whether it’s a football team, a production assembly line or a team of cooks and chefs in a large restaurant. The same holds true for a rescue team. Some of the factors that affect performance may be physical. Let’s face it, our 5’4” 150-pound “Hole Rat” can pass through tight portals and operate in congested confined spaces easier than most 6’ 6” 280-pounders. Sometimes it’s mechanical aptitude. We see it all the time in training rescuers. Some folks have a natural mechanical aptitude and can understand and build rescue systems as if it were second nature, while others struggle to get it right on a consistent basis.

Where Do You Fit Best on Your Rescue Team?And, yes, a pronounced fear of height that may inhibit a rescuer’s ability to perform effectively at height is yet another factor to consider. Other things include leadership qualities, attention to detail, general physical strength, comfort with breathing air systems, the presence or lack of claustrophobia and the list goes on. The only way to realize and understand these abilities and limitations is to practice as a team – and practice often – while staying attuned to these individual abilities and limits. Understand them and use them to your advantage in determining who is the best fit for the various team member roles on any given rescue effort. And please, please do not take it personally. Again, we all have our pride and want to shine; however, we all can shine as a team! And the best way to shine as a team is to understand, as best we can, where each member best fits and can contribute most.

Remember, so much of rescue is about mechanical systems, safety, victim packaging and other easily defined considerations. As rescuers, I invite you to take it to the next level. Think about the harder-to-define factors such as individual team member skills AND limitations. Help each other as a team arrive at the best mix of the right people in the right positions – and all for the good of the victim!

RescueTalk™ (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!