Using a Crane in Rescue Operations

Sunday, September 30, 2018
 
Using a Crane in Rescue Operations
We’re often asked, “Can I use a crane as part of my rescue plan?”

If you’re referring to using a crane as part of moving personnel or victims, the answer is “No, except in very rare and unique circumstances.” The justification for using a crane to move personnel, even for the purposes of rescue, is extremely limited. Therefore, it is very important to understand the do’s and don’ts for using a heavy piece of equipment in a rescue operation.

On the practical side, the use of a crane as a “stationary, temporary high-point anchor” can be a tremendous asset to rescuers. It may also be part of a rescue plan for a confined space; for example, a top entry fan plenum. The use of a stationary high-point pulley can allow rescue systems to be operated from the ground. It can also provide the headroom to clear rescuers and packaged patients from the space or an elevated edge.

Using a Crane in Rescue OperationsOf course, the security of the system's attachment to the crane and the ability to “lock-out” any potential movement are a critical part of the planning process. If powered industrial equipment is to be used as a high-point, it must be treated like any other energized equipment with regard to safety. Personnel would need to follow the Control of Hazardous Energy [Lockout/Tagout 1910.147]. The equipment would need to be properly locked out – (i.e., keys removed, power switch disabled, etc.). You would also need to check the manufacturer’s limitations for use to ensure you are not going outside the approved use of the equipment.

Back to using a crane for moving personnel – because of the dangers involved, OSHA severely limits its use. In order to utilize a crane, properly rated “personnel platforms or baskets” must be used. Personnel platforms that are suspended from the load line and used in construction are covered by 29 CFR 1926.1501(g). There is no specific provision in the General Industry standards, so the applicable standard is 1910.180(h)(3)(v).

This provision specifically prohibits hoisting, lowering, swinging, or traveling while anyone is on the load or hook.
OSHA prohibits hoisting personnel by crane or derrick except when no safe alternative is possible. The use of a crane for rescue does not provide an exception to these requirements unless very specific criteria are met. OSHA has determined, however, that when the use of a conventional means of access to any elevated worksite would be impossible or more hazardous, a violation of 1910.180(h)(3)(v) will be treated as “de minimis” if the employer complies with the personnel platform provisions set forth in 1926.1501(g)(3), (4), (5), (6), (7), and (8).

Note: De minimis violations are violations of standards which have no direct or immediate relationship to safety or health. Whenever de minimis conditions are found during an inspection, they are documented in the same way as any other violation, but are not included on the citation.

Therefore, the hoisting of personnel is not permitted unless conventional means of transporting employees is not feasible. Or, unless conventional means present even greater hazards (regardless if the operation is for planned work activities or for rescue). Where conventional means would not be considered safe, personnel hoisting operations meeting the terms of this standard would be authorized.

OSHA stresses that employee safety, not practicality or convenience, must be the basis for the employer's choice of this method.
However, it’s also important to consider that OSHA specifically requires rescue capabilities in certain instances, such as when entering permit-required confined spaces [1910.146]; or when an employer authorizes personnel to use personal fall arrest systems [1910.140(c)(21) and 1926.502(d)(20)]. In other cases, the general duty to protect an employee from workplace hazards would require rescue capabilities.

Consequently, being “unprepared for rescue” would not be considered a legitimate basis to claim that moving a victim by crane was the only feasible or safe means of rescue.

Using a Crane in Rescue OperationsThis is where the employer must complete written rescue plans for permit-required confined spaces and for workers-at-height using personal fall arrest systems – or they must ensure that the designated rescue service has done so. When developing rescue plans, it may be determined that there is no other feasible means to provide rescue without increasing the risk to the rescuer(s) and victim(s) other than using a crane to move the human load. These situations would be very rare and would require very thorough documentation. Such documentation may include written descriptions and photos of the area as part of the justification for using a crane in rescue operations.

Here’s the key… simply relying on using a crane to move rescuers and victims without completing a rescue plan and very clear justification would not be in compliance with OSHA regulations.
It must be demonstrated that the use of a crane was the only feasible means to complete the rescue while not increasing the risk as compared to other means. Even then, there is the potential for an OSHA Compliance Officer to determine that there were indeed other feasible and safer means.

WARNING: Taking it a step further, if some movement of the crane (or fire department aerial ladder, for example) is required, extreme caution must be taken! Advanced rigging techniques may be required to prevent movement of the crane from putting undo stress on the rescue system and its components. Rescuers must also evaluate if the movement would unintentionally “take-in” or “add” slack to the rescue system, which could place the patient in harm’s way. Movement of a crane can take place on multiple planes – left-right, boom up-down, boom in-out and cable up-down. If movement must take place, rescuers must evaluate how it might affect the operation of the rescue system.

Using a Crane in Rescue OperationsOf course, one of the most important considerations in using any type of mechanical device is its strength and ability (or inability) to “feel the load.” If the load becomes hung up on an obstacle while movement is underway, serious injury to the victim or an overpowering of system components can happen almost instantly. No matter how much experience a crane operator has, when dealing with human loads, there is no way he can feel if the load becomes entangled. And, most likely, he will not be able to stop before injury or damage occurs.

Think of it this way, just as rescuers limit the number of haul team members so they can feel the load, that ability is completely lost when energized devices are used to do the work.
For rescuers, a crane is just another tool in the toolbox – one that can serve as temporary, stationary high-point making the rescue operation an easier task. However, using a crane that will require some movement while the rescue load is suspended should be a last resort! There are simply too many potential downfalls in using cranes. This also applies to fire department aerial ladders. Rescuers must consider the manufacturer’s recommendations for use. What does the manufacturer say about hoisting human loads? And, what about the attachment of human loads to different parts of the crane or aerial?

There may be cases in which a crane is the only option. For example, if outside municipal responders have not had the opportunity to complete a rescue plan ahead of time, they will have to do a “real time” size-up once on scene. Due to difficult access, victim condition, and/or available equipment and personnel resources, it may be determined that using a crane to move rescuers and victims is the best course of action.

Using a crane as part of a rescue plan must have rock-solid, written justification as demonstration that it is the safest and most feasible means to provide rescue capability. Planning before the emergency will go a long way in providing options that may provide fewer risks to all involved.

So, to answer the question, “Can I include the use of a crane as part of my written rescue plan?” Well, yes and no. Yes, as a high-point anchor. And, no, the use of any powered load movement will most likely be an OSHA violation without rock-solid justification. The question is, will it be considered a “de minimis" violation if used during a rescue? Most likely it will depend on the specifics of the incident. However, you can be sure that OSHA will be looking for justification as to why using a crane in motion was considered to be the least hazardous choice.

NOTE: Revised 9/2018. Originally published 10/2014.

read more

Q&A: Energy Absorber Systems and Safety Lines

Friday, September 28, 2018

Q&A: Energy Absorber Systems and Safety LinesREADER QUESTION: 
Is an energy absorber system needed on the safety line to help limit the impact forces should the belay system be engaged to arrest the falling load?

ROCO TECH PANEL ANSWER: 

Thank you for your question. Roco uses traditional untensioned safety lines in most all of our rescue systems, and we do indeed incorporate an energy absorber (shock) in those belay systems. While OSHA does not address specifics when it comes to rescue systems, there is some overlap from the OSHA as well as the ANSI standards that is helpful when considering the belay system during rescue. 

NFPA 1006 Standard for Technical Rescue Personnel Professional Qualifications, sections 5.2.9 through 5.2.11, provides guidance for the construction of a belay (safety line) system. Specifically, the 5.2.11 objective statement calls for the belay system to ensure “the fall is arrested in a manner that minimizes the force transmitted to the load.” The annex information to 5.2.9 adds: “A.5.2.9 Belay systems are a component of single-tensioned rope systems that apply a tensioned main system on which the entire load is suspended and a non-tensioned system with minimal slack (belay) designed, constructed, and operated to arrest a falling load in the event of a main system malfunction or failure. 

While these traditional systems used for lowering and raising are in common use, two-tensioned rope systems can also be used to suspend the load  while maintaining near equal tension on each rope, theoretically reducing the fall distance and shock force in the event of a singular rope failure. To be effective, two-tensioned rope systems must utilize devices that will compensate appropriately for the immediate transfer of additional force associated with such failures.”

Additionally the NFPA 1006 definition of belay is “3.3.9* Belay. The method by which a potential fall distance is controlled to minimize damage to equipment and/or injury to a live load.” And Annex information “A.3.3.9 Belay. This method can be accomplished by a second line in a raise or lowering system or by managing a single line with a friction device in fixed-rope ascent or descent. Belays also protect personnel exposed to the risk  of falling who are not otherwise attached to the rope rescue system."

So, where can OSHA help in all of this? OSHA requires the maximum force of a fall arrest system not to exceed 1,800 pounds. ANSI is more protective and requires arresting forces not to exceed 900 pounds. NFPA does not state what the arresting forces need to be limited to, but the performance measurement is to “minimize damage to equipment and/or injury to a live load.” OSHA and ANSI have already done the homework on this and stated their performance requirements. One proven way to meet NFPA 1006 as well as OSHA and ANSI requirements is to incorporate an energy absorber in the belay (fall arrest) system. Whether 1,800 pounds or the ANSI required 900 pounds is appropriate, or if you use a two tensioned system, this is up to your AHJ. 

read more

Safe Confined Space Entry - A Team Approach

Wednesday, September 26, 2018

by Dennis O'Connell, Director of Training/Chief Instructor

Having been involved in training for 30 years, I have had the opportunity to observe how various organizations in many different fields approach confined space entry and rescue. And, when it comes to training for Entrants, Attendants and Entry Supervisors, the amount of time and content varies greatly.

Roco Rescue CS EntryMost often, training programs treat the three functions as separate, independent roles locked into a hierarchy based on the amount of information to be provided. However, it’s critical to note, if any one of these individuals fails to perform his or her function safely or appropriately, the entire system can fail – resulting in property damage, serious injury or even death in a confined space emergency.

Before I go any further, I have also seen tremendous programs that foster cooperation between the three functions and use more of a confined space “entry team” approach. This helps to ensure that the entry is performed safely and efficiently.

It also allows all parties to see the overall big picture of a safe entry operation.
In this model, all personnel are trained to the same level with each position understanding the other roles as well. This approach serves as “checks and balances” for confirming that:

• The permit program works and is properly followed;
• The permit is accurate for the entry being performed;
• All parties are familiar with the various actions that need to occur; and,
• The team knows what is expected of each other to ensure a SAFE ENTRY!

However, I am often surprised to find that Entrant and Attendant personnel have little information about the entry and the precautions that have been taken. They are relying solely on the Entry Supervisor (or their foreman) to ensure that all safety procedures are in place. If you have a well-tuned permit system and a knowledgeable Entry Supervisor, this may be acceptable, but is it wise? As the quality of the permit program decreases, or the knowledge and experience of the Entry Supervisor is diminished, so is the level of safety.


Roco CS Entry Supervisor & AttendantIn my opinion, depending exclusively on the Entry Supervisor is faulty on a couple of levels. First of all, the amount of blind trust that is required of that one person. From the viewpoint of an Entrant, do they really have your best interest in mind? And, we all know what happens when we “ass-u-me” anything! Plus, it puts the Entry Supervisor out there on their own with no feedback or support for ensuring that all the bases are covered correctly. There are no checks and balances, and no team approach to ensuring safety.

Looking at how 1910.146 describes the duties of Entrant, Attendant and Entry Supervisor tends to indicate that each role requires a diminishing amount of information. However, we believe these roles are interrelated, and that a team approach is far safer and more effective. To illustrate this, we often pose various questions to Entrants and Attendants out in the field. Here is a sample of some of the feedback we get.

We may ask Entrants…Who is going to rescue you if something goes wrong? Has the LOTO been properly checked? At what point do you make an emergency exit from the space? What are the acceptable entry conditions, and have these conditions been met? How often should the space be monitored? Typically, the answer is, “I guess when the alarm goes off, or when somebody tells me to get out!”

When we talk to Attendants about their duties, we often find they only know to “blow a horn” or “call the supervisor” if something happens, or if the alarm on the air monitor goes off. We also ask…What about when the Attendant has an air monitor with a 30 ft. hose, and there is no pump? Or, if you have three workers in a vertical space and the entire rescue plan consists of one Attendant, a tripod and a winch, plus no one in the space is attached to the cable – what happens then?
  
These are very real scenarios. Scary, but true. It often shows a lack of knowledge and cooperation between the three functions involved in an entry. And, that’s not even considering compliance!
We ask, would it not be better to train your confined space entry team to the Entry Supervisor level? Wouldn’t you, as an Entrant, want to know the appropriate testing, procedures and equipment required for the entry and specified on the permit? Would it not make sense to walk down LOTO with the Attendant and Entrant? This would better train these individuals to understand non-atmospheric hazards and controls; potential changes in atmosphere; or, how to employ better air monitoring techniques. All crucial information.

More in-depth training allows the entry team to take personal responsibility for their individual safety as well as that of their fellow team members. It also provides multiple views of the hazards and controls including how it will affect each team member’s role. Having an extra set of eyes is always a good thing – especially when dealing with the hazards of permit spaces. Let’s face it, we’re human and can miss something. Having a better-trained workforce, who is acting as a team, greatly reduces this possibility.

Roco Rescue Remote MonitoringMany times, we find that the role of Attendant is looked upon as simply a mandated position with few responsibilities. They normally receive the least amount of training and information about the entry. However, the Attendant often serves as the “safety eyes and ears” for the Entry Supervisor, who may have multiple entries occurring at the same time. In reality, the Attendant becomes the “safety monitor” once the Entry Supervisor okays the entry and leaves for other duties. So, there’s no doubt, the better the Attendant understands the hazards, controls, testing and rescue procedures – the safer that entry is going to be!

As previously mentioned, training requirements for Entrant, Attendant and Supervisor are all over the board with little guidance as to how much training or how in-depth that training should be. Common sense tells us that it makes better sense to train entry personnel for their jobs while raising expectations of their knowledge base.

OSHA begins to address some base qualifications in the new Confined Spaces in Construction standard (1926 Subpart AA) by requiring that all confined spaces be identified and evaluated by a “competent person.” It also requires the Entry Supervisor to be a “qualified person.” Does the regulation go far enough? We don’t think so, nor do some of the facilities who require formal, in-depth training courses for their Entrant, Attendant and Entry Supervisor personnel.
 
OSHA 1926.32 DEFINITIONS:
• Competent person: “One who is capable of identifying existing and predictable hazards in the surroundings or working conditions which are unsanitary, hazardous, or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them.” 
• Qualified person: “One who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.” 

So, do yourself a favor…go out and interview your Entrants and Attendants on a job.
Find out how much they do (or don’t) understand about the entry and its safety requirements. Do not reprimand them for not knowing, as it may not be their fault. It may be a systemic deficiency and the training mentality of distributing a hierarchy of knowledge based on job assignment.

Simply put, we believe that arming the entry team with additional information results in safer, more effective confined space operations. After all, isn’t that what it’s all about? GO TEAM!

Additional Resources:
• Download our Confined Space Entry Quick Reference Checklist. This checklist reiterates the value of approaching permit-required confined space entries as a team. In addition to OSHA-required duties and responsibilities for the three primary roles, we have included our recommendations as well. These are duties that we feel are important for the individual(s) fulfilling that role to be knowledgeable and prepared to perform if need be.

Safe Entry Workshop: Entrant, Attendant & Entry Supervisor is now available. See the full course description for details.

overlay
Dennis O'Connell

Author's Bio: Dennis O'Connell has been a technical rescue consultant and professional instructor for Roco Rescue since 1989. He joined the company full-time in 2002 and is now the Director of Training and a Chief Instructor. He currently is responsible for Roco's training curriculum to include Confined Space & High Angle, Trench Rescue, Structural Collapse and Instructor Development. Dennis has played a key role in the development of Roco's Rescue Technician certification programs to NFPA 1006. Prior to joining Roco, he served on the NYPD Emergency Services Unit (ESU) for 17 years. He was a member of NY's Task Force 1 and has responded to numerous national disasters such as the World Trade Center and the Oklahoma City bombing.

read more

Fatal Trench Collapse Results in Severe Violator Status

Tuesday, September 25, 2018

An Ohio excavating company faces $202,201 in penalties and was placed in OSHA’s Severe Violator Enforcement Program1 after an employee suffered fatal injuries in a trench collapse. 

Inspectors found that the company was working in trenches up to 16-feet deep without adequate cave-in protection. The company failed to: use protective systems to prevent a cave-in; remove accumulating water; properly use ladders to enter and exit the trench; prevent employees from working beneath a suspended trench box; ensure employees wore hard hats; and make provisions for prompt medical attention in the event of injury.

“A trench can collapse in seconds, burying workers under the weight of thousands of pounds of soil,” said Ken Montgomery, OSHA Cincinnati Area Office Director. “This tragedy was preventable, and could have been avoided if the employer had installed required protective systems to prevent a trench cave-in.”

Here's a video showing multiple violations like the ones described here.

1OSHA's Severe Violator Enforcement Program (SVEP) concentrates resources on inspecting employers who have demonstrated indifference to their OSH Act obligations by committing willful, repeated, or failure-to-abate violations. Enforcement actions for severe violator cases include mandatory follow-up inspections, increased company/corporate awareness of OSHA enforcement, corporate-wide agreements, where appropriate, enhanced settlement provisions, and federal court enforcement under Section 11(b) of the OSH Act. In addition, this Instruction provides for nationwide referral procedures, which includes OSHA's State Plan States. This instruction replaces OSHA's Enhanced Enforcement Program (EEP).

read more

Inspection Process for Roco Training Ropes

Tuesday, August 28, 2018

Inspection Process for Roco Training RopesQuestion: We recently had a student ask how our training rope is monitored for wear and tear because of its extensive use...

Answer: Good question, and it’s a big job for us, no doubt. We’ve used and inspected a lot of rope in the past 35+ years, but this aspect of life safety can never be overlooked or taken lightly. As always, we urge everyone to carefully follow the care, use and inspection guidelines provided by their rope manufacturer. For added safety and as standard practice, we also use secondary back-up ropes and hardware in all field activities. 

Because we train thousands of students per year, we must accept the fact that there are numerous opportunities for our ropes to be exposed to wear such as being stepped on or exposed to dirt and gravel. It is for these reasons that we perform rigorous inspection of the ropes before and after use. Plus, we also conduct an annual competent person equipment inspection as recommended by NFPA.
 
As added safety, we also expect our students to do their part in monitoring the equipment during a class, and that’s why we’re glad you brought this up.
We teach and enforce rope care and inspection of all equipment, including ropes, in all of our classes. Inspections are accomplished at multiple times during any given class including during inventory. Additionally, all equipment is inspected by a Roco employee at the conclusion of each class. If there are any signs of damage or degradation that would render the rope unserviceable according to the manufacturer’s instructions for use, that rope will be taken out of service.

Of course, we’ve seen some rope damaged over the years, which is to be expected with the use our rope receives. However, to my knowledge, we’ve never had a rope failure. We’ve seen cut sheaths and sheath slippage, evidence of broken core fibers, and other damage that failed the rope inspection. But, not once, have we had a rope fail while it was being used to support a life load. The construction and the minimum breaking strength requirements of life safety rope provide a very substantial margin of safety. And, there again, we also have the redundancy of a back-up system in place.

All manufacturers of life safety rope are required by NFPA 1983 (2017 edition) to provide the following inspection criteria information in their instructions for use:

(1) Rope has not been visually damaged.
(2) Rope has not been exposed to heat, direct flame impingement, or abrasion.
(3) Rope has not been subjected to impact load.
(4) Rope has not been exposed to liquids, solids, gasses, mists, or vapors of any chemical or other material than can deteriorate rope.
(5) Rope passes inspection when inspected by a qualified person following the manufacturer’s inspection procedures both before and after each use.

The following inspection tips are provided by PMI Life Safety Rope:
Inspection Process for Roco Training Ropes

HOW TO INSPECT YOUR ROPE

LOOK AT IT.... ALL OF IT!
Start at one end and look at every inch of the rope. Watch for signs that might indicate possible damage such as discoloration, chemical odors, abrasion, cuts or nicks in the outer sheath and visible differences in the diameter of the rope in one area in relation to the rest of the rope.

WRAP IT IN SMALL LOOPS AND LOOK!
Wrap the rope around your hand to form small loops at different random points along the ropes length. Look at these small loops as you make them, the consistency of the loop should be uniform throughout. If it’s not, you might have a problem with the rope’s core.

FEEL THE ROPE!
While you are looking at every inch of the rope, run it through your bare hands and feel it for changes that might indicate damage to the core. Changes may include any inconsistencies in rope diameter, soft or “mushy” spots, or extraordinarily stiff areas.

WRITE IT ALL DOWN!
Write the results of your inspection on the Rope Log included with your rope. Be sure to include anything you found in your inspection that might be or become a concern and document other important information about the rope such as an occurrence of uncontrolled or excessive loading, rope older than 10 years, contact with harmful chemicals, and history of use.

IF IN DOUBT, THROW IT OUT!
If you are not sure about the integrity of a rope........DON’T USE IT!
Consult the manufacturer if you need help.

So, thank you again for asking about the rope used continuously in our training programs. Even with our many years of experience, we do not take rope safety margins as a license to misuse our ropes. And that is why we are diligent in caring for and inspecting all of our equipment including the ropes. 

read more
1 .. 5 6 7 8 9 .. 68

RescueTalk (RocoRescue.com) has been created as a free resource for sharing insightful information, news, views and commentary for our students and others who are interested in technical rope rescue. Therefore, we make no representations as to accuracy, completeness, or suitability of any information and are not liable for any errors, omissions, or delays in this information or any losses, injuries, or damages arising from its display or use. All information is provided on an as-is basis. Users and readers are 100% responsible for their own actions in every situation. Information presented on this website in no way replaces proper training!